Энергия новая
Хотя перспектива энергетического голода может рассматриваться как неминуемая и ужасная, она все‑таки не неизбежна. Это катастрофа, которую создает человек, и поэтому она поддается человеку: он может ее отложить или избежать ее.
Как и в случае с ресурсами, существуют контрмеры.
Во‑первых, существует сбережение.
В течение двухсот лет человечеству порядком везло, что оно располагало достаточно дешевой энергией, и это имело не очень приятные побочные эффекты. Мало было причин идти в направлении сбережения энергии, но было сильное искушение — двигаться в направлении усиливающегося потребления.
Однако эра дешевой энергии закончилась (по крайней мере на время). Соединенные Штаты, например, больше не в состоянии обеспечивать себя своей нефтью. Они произвели нефти намного больше, чем любая другая страна, но именно по этой причине ее резервы сейчас истощаются быстрее, как раз когда национальный темп потребления движется вверх.
Это означает, что Соединенные Штаты должны импортировать все больше и больше нефти. Это склоняет торговый баланс во все более неблагоприятном направлении, оказывает невыносимое давление на доллар, ведет к повышению инфляции и в общем неуклонно подрывает американскую экономику.
Сбережение поэтому для нас не только желательно, но и необходимо.
А сберегать энергию есть где, начиная с устранения величайших расточителей энергии — различных военных машин мира. С тех пор как война стала невозможна без самоубийства, обеспечение конкуренции военных машин при астрономических ценах на энергию, в условиях, когда основной мировой запас ее быстро сокращается, — явно неразумно.
Помимо прямого сбережения нефти, существуют прямые возможности увеличения эффективности добычи, при которых нефть может продолжать извлекаться из существующих скважин, так что «сухие» скважины смогут продолжать выдавать нефть.
Кроме того, может быть увеличена эффективность, с которой энергия извлекается из сжигаемой нефти (или в общем из сжигаемого топлива). В настоящее время тепло от горящего топлива производит взрывы, которые приводят в движение части двигателя внутреннего сгорания, или оно преобразует воду в пар, давление которого вращает турбину, вырабатывающую электричество. В таких устройствах только 25‑40 процентов энергии сжигаемого топлива превращается в полезную работу, остальное теряется как неиспользованное тепло. И мало надежды значительно повысить эффективность.
Существует, однако, другая стратегия. Горящим топливом можно нагревать газы, пока атомы и молекулы не расщепятся на электрически заряженные частицы, которые можно пропускать через магнитное поле, создавая таким образом электрический ток. Такие процессы «магнитогидродинамики» (МГД) будут действовать с существенно более высокой эффективностью, чем обычные технологии.
Теоретически возможны технологии выработки электричества и накопления его в электрических батареях путем прямого соединения топлива с кислородом, минуя промежуточное производство тепла. Здесь достижима эффективность 75 процентов, а то и все 100 процентов. До сих пор такие «топливные батареи» не разработаны, хотя трудности, которые стоят на этом пути, можно преодолеть.
Если уж на то пошло, могут быть найдены новые нефтяные источники. История последнего полувека — это история последовательных предсказаний истощения нефтяных ресурсов, которые не оправдывались. Перед Второй мировой войной представлялось, что добыча нефти достигнет пика и пойдет на убыль в 40‑е годы; после войны дата была отложена на 60‑е, сейчас — на 90‑е. Так она и будет откладываться.
Ясно, что мы не можем на это рассчитывать. Что больше всего влияло на перенесение расчетного дня, это открытие время от времени новых нефтяных ресурсов. Самое крупное из этих открытий — это довольно удивительная находка в годы после Второй мировой войны: было обнаружено, что нефтяные резервы Среднего Востока неожиданно огромны. В настоящее время 60 процентов известных нефтяных резервов сконцентрировано в маленьком районе около Персидского залива (который был также главным местонахождением — вот любопытное совпадение, — самой ранней цивилизации человечества).
Маловероятно, чтобы мы еще раз столкнулись с такой богатой находкой. С каждым десятилетием все большие площади Земли прочесываются в поисках нефти посредством все более сложной техники. Мы нашли некоторое количество нефти на Аляске, некоторое количество в Северном море, мы все более тщательно проводим разведку на континентальном шельфе, но наступит день, когда уже больше нечего будет находить, не останется больше запасов нефти.
Мы можем заниматься сбережением, увеличивать эффективность старых скважин и строить новые, но представляется неизбежным, что пройдет немного времени, и не успеет закончиться двадцатый век, как все нефтяные скважины окажутся почти иссякнувшими. Что же тогда?
Когда это произойдет, нефть смогут получать из других источников, помимо нефтяных скважин, где нефть находится в пустотах подземных пород и откуда она сравнительно легко извлекается. Существует еще сланец, горная порода, которая содержит смолистое органическое вещество, называемое «кероген». Если сланец нагреть, то молекулы керогена расщепляются, и получается вещество, очень похожее на сырую нефть. Количество такой сланцевой нефти в земной коре должно быть примерно в 3000 раз больше обычной нефти. Одно месторождение нефтяного сланца в Соединенных Штатах может содержать нефти в семь раз больше всей нефти на Среднем Востоке.
Проблема в том, что сланец надо добывать шахтным способом, его необходимо нагревать и произведенную нефть (даже самый богатый сланец дает лишь два барреля на тонну породы) придется рафинировать не совсем теми методами, которые сейчас применяются. После этого еще придется как‑то избавляться от отработанного сланца. Трудности и расходы очень велики, а обычная нефть еще слишком доступна, чтобы заставить людей делать капитальные вложения. Однако в будущем, когда нефти станет меньше, сланцевая нефть может послужить для того, чтобы приостановить спад (разумеется, цена ее будет выше).
Затем, конечно, существует каменный уголь. Уголь был основным источником энергии до того, как его заменила нефть, и он все еще есть, его можно добывать. Обычно считают, что в земле угля достаточно для того, чтобы мир был в движении при существующем темпе потребления энергии на протяжении тысяч лет. Однако в настоящий момент не всякий уголь можно добыть практикующимися шахтными методами. Даже по самой скромной оценке уголь будет существовать еще несколько сотен лет, и к тому времени технологии шахтных работ могут усовершенствоваться.
С другой стороны, шахтная добыча опасна. Происходят взрывы, обрушения, случаются удушья. Работа физически тяжелая, шахтеры умирают от заболеваний легких. Процесс работы в шахтах имеет тенденцию загрязнять землю вокруг шахты, громоздить горы шлака и пустой породы. После того как уголь извлечен из шахты, его надо транспортировать, это гораздо более трудная задача, чем качать нефть по трубопроводу. С углем гораздо труднее обращаться, чем с нефтью, он оставляет тяжелую золу, а также (если не принимаются меры по очистке угля перед использованием) загрязняющий воздух дым.
И все же мы можем ожидать, что к углю подойдут с новыми, более сложными технологиями. Поверхность земли можно восстановить. (Конечно, потребуются время, труд и деньги, чтобы это сделать.) Затем, чтобы избежать огромных расходов и трудностей по перевозке навалом, многое можно сделать на шахтной площадке.
Например, на шахтной площадке можно сжечь уголь, чтобы произвести электричество по технологии магнитогидродинамики. В таком случае придется транспортировать именно электричество, а не уголь.
Уголь также можно нагревать в угольной шахте, чтобы получить газы, включая окись углерода, метан и водород. Их можно так обработать, чтобы получить эквиваленты природного газа, бензин и другие нефтепродукты. И тогда надо будет транспортировать нефть и газ, а не уголь, и угольные шахты станут нашими новыми нефтяными скважинами.
Даже тот уголь, который должен использоваться как уголь (например, при производстве железа и стали), может использоваться более эффективно. Его можно превратить в тонкую пыль, которую, возможно, удастся перевозить, воспламенять и сжигать с ненамного большими трудностями, чем нефть.
Наряду со сланцевой нефтью и угольными шахтами, мы вполне могли бы тогда использовать нашу нефть до того, как окончательно иссякнут нефтяные скважины, и принципиально не менять технологию еще несколько веков.
Существует, однако, серьезная опасность, связанная с зависимостью от нефти и угля и не зависящая от того, насколько развиты наши технологии. Эти «ископаемые виды топлива» залегли под землю за сотни миллионов лет, они представляют много триллионов тонн углерода, который все это время не был в атмосфере ни в какой форме.
Сейчас мы сжигаем эти виды топлива все большими и большими темпами, превращая углерод в двуокись углерода и выбрасывая ее в атмосферу. Часть ее растворится в океане, часть ее может быть поглощена более интенсивным ростом растений, который может быть ускорен ее наличием. Часть ее, однако, останется в воздухе и повысит содержание двуокиси углерода в атмосфере.
Например, в 1900 году содержание двуокиси углерода в атмосфере составляло 0,029 процента, а теперь достигло 0,032 процента. По предварительной оценке к 2000 году концентрация двуокиси углерода достигнет 0,038 процента, то есть увеличение за век примерно на 30 процентов. Это, должно быть, результат, во всяком случае частично, сгорания ископаемых видов топлива, хотя это, также частично, может быть следствием отступления лесов, более эффективных поглотителей углерода, чем другие виды растительности.
Увеличение содержания в атмосфере двуокиси углерода, конечно, невелико. Даже если процесс сгорания ископаемых видов топлива продолжится и ускорится, оценено, что самая высокая концентрация, которой мы, вероятно, достигнем, будет 0,115 процента. Но даже это не отразится на нашем дыхании.
Однако нам надо беспокоиться не о дыхании. Не требуется большого увеличения концентрации двуокиси углерода в атмосфере, чтобы значительно усилить парниковый эффект. Средняя температура Земли могла бы быть в 2000 году на один градус по Цельсию выше, чем в 1900 году из‑за добавившейся двуокиси углерода (Конечно, парниковому эффекту противодействует тот факт, что в результате деятельности промышленности в воздух выбрасывается также и больше пыли. Это повышает уровень отражения атмосферой солнечного света в космос, и это может охлаждать Землю. Действительно, у нас были необычно холодные зимы в 70‑е годы. Однако в конце концов согревающий эффект двуокиси углерода безусловно выиграет эту гонку, особенно если мы не примем меры по очистке атмосферы, когда ее загрязнение достигнет опасного уровня). Я взял бы больший период, чтобы достичь точки, когда климат Земли будет испытывать серьезное воздействие и когда ледовые шапки Земли могут начать таять с гибельными последствиями для континентальных низин.
Собственно, существует и такое мнение, что если содержание двуокиси углерода увеличится выше определенной точки, небольшое увеличение средней температуры океана высвободит двуокись углерода из раствора ее в океанской воде, что соответственно усилит парниковый эффект и поднимет температуру океана еще выше, высвобождая еще больше двуокиси углерода, и так далее. Подобный «неудержимый парниковый эффект» в конце концов может поднять температуру выше точки кипения и сделать Землю необитаемой, и это будет, безусловно, катастрофическим последствием сжигания ископаемых видов топлива.
Некоторые полагают, что период мягкого парникового эффекта в прошлом оказал на Землю радикальное воздействие. Около 75 миллионов лет назад тектонические процессы произвели изменения земной коры таким образом, что вызвали усыхание ряда мелких морей. Эти моря были особенно богаты водорослями, которые абсорбировали двуокись углерода из воздуха. Содержание атмосферной двуокиси поэтому увеличилось, и Земля стала теплее.
Крупные животные имеют меньшую способность понижать температуру тела, чем мелкие, и им гораздо труднее сохранять свою относительно невысокую температуру, не давая ей повышаться. В особенности клетки спермы, которые особенно чувствительны к теплу, могли быть повреждены в это время, так что крупные животные потеряли способность к воспроизведению потомства. Может быть, таким образом и вымерли динозавры.
Не ожидает ли и нас похожая и даже худшая судьба, которую мы уготовим сами себе?
В других подобных случаях я полагался на наши достижения в будущем, которые могли бы нам помочь противостоять катастрофе или избежать ее, и мы можем представить себе человечество способным обработать атмосферу таким образом, чтобы извлечь избыточную двуокись углерода. Однако если начнет свое действие «неудержимый парниковый эффект», он (в отличие от катастрофы наступления ледникового периода или расширяющегося Солнца), вероятно, обрушится столь стремительно, что трудно представить нашу технику, продвигающуюся вперед настолько быстро, чтобы она могла нас спасти.
Тогда вполне может статься, что проекты поиска новых нефтяных скважин или замены нефти сланцем или углем, являются вопросом, не имеющим практического значения, что существует критический уровень темпа, которым мы можем сжигать ископаемое топливо любого рода и из любого источника без риска парниковой катастрофы. Оставляет ли это нам какие‑нибудь альтернативы, или же нам надо в отчаянии ждать, что цивилизация так или иначе потерпит крах в течение следующего века?
Альтернатива есть. Существуют старые источники энергии, которые человечество знало до того, как на сцене появились ископаемые виды топлива. Существуют наши мускулы и мускулы животных. Существует ветер, движущая сила воды, приливы и отливы, внутреннее тепло Земли, дерево (Источники энергии могут быть очень неожиданными. Так, 13 января 1998 года программой развития нетрадиционных источников энергии ЕС Thermie в Нортгемптоне в Англии намечено строительство электростанции, действующей на курином помете. Предполагается, что она будет сжигать в топках 120 тысяч тонн куриного помета в год). Все они производят энергию и не имеют в качестве последствия загрязнения, и все они возобновляемы и неиссякаемы. Более того, их можно использовать более сложным образом, чем ранее.
Например, нам не нужно как сумасшедшим рубить деревья, чтобы жечь их ради тепла или, чтобы выжечь древесный уголь для сталелитейной промышленности. Мы можем выращивать специальные культуры, разводимые за их высокую скорость поглощения двуокиси углерода, и приготовить из них биомассу. Мы можем сжечь эти специально выращенные культуры прямо или все же лучше вырастить определенные разновидности, из которых можно выделить горючее масло или из которых мы сможем получить спирт. Такие естественно произведенные виды топлива могут помочь нашим будущим автомобилям и фабрикам.
Большим преимуществом топлива, произведенного из растений, является то, что оно не добавляет двуокиси углерода в воздух. Топливо это включает в себя двуокись углерода, которая поглощалась месяцами или годами до этого и которая возвращается в атмосферу, откуда недавно поступила.
Опять же ветряные мельницы или их эквивалент могли бы быть построены гораздо более эффективно, чем их средневековые предшественники, и могли бы извлекать гораздо больше энергии, используя силу ветра.
В прежние времена приливы и отливы использовали для того, чтобы просто выводить корабли из гаваней. Теперь они могут быть использованы для того, чтобы при высоком приливе наполнять резервуары и при низком отливе за счет падения воды вращать турбины и производить электричество. Были предложения и о том, чтобы для получения электричества использовать разницу температур в глубине и на поверхности океана в тропиках, использовать непрекращающееся движение океанских волн.
Все эти виды энергии, вообще говоря, безопасны и вечны. Они не дают опасного загрязнения и всегда будут возобновляться, пока существуют Земля и Солнце.
Однако все эти источники энергии маломощны. Вот в том‑то и дело, что они ни по отдельности, ни даже все вместе не могут обеспечить потребности человечества в энергии, как последние два столетия делают уголь и нефть. Это не означает, что они не важны. С одной стороны, каждый из этих видов энергии в каком‑то одном определенном месте и по какой‑то определенной причине может быть наиболее удобным видом энергии. А все они вместе могут служить для продления времени использования ископаемых видов топлива. При всех этих других видах доступной энергии сжигание ископаемых видов топлива может продолжаться в темпе, достаточно невысоком, чтобы не подвергать опасности климат, и поддерживать этот темп надо в течение длительного времени. В течение этого времени, возможно, найдется какой‑нибудь источник энергии — безопасный, вечный и обильный.
И первый вопрос тут: существует ли вид энергии с подобными характеристиками?
Ответ: да, существует.
- Айзек Азимов
- Предисловие
- Часть первая катастрофы первого класса
- 1. Страшный суд
- Рагнарёк
- Ожидание мессии
- Милленаризм
- 2. Возрастание энтропии1 законы сохранения
- Поток энергии
- Второе начало термодинамики
- Движение наугад
- 3. Крушение вселенной галактики
- Расширяющаяся вселенная
- Сжимающаяся вселенная
- 4. Гибель звезд гравитация
- Черные дыры
- Квазары
- В пределах нашей галактики
- Часть вторая катастрофы второго класса
- 5. Столкновения с солнцем
- Рождение в тайной схватке
- На орбитах вокруг центра галактики
- Мини‑черные дыры
- Антиматерия и свободные планеты
- 6. Смерть солнца источник энергии
- Красные гиганты
- Белые карлики
- Сверхновые
- Солнечные пятна
- Нейтрино
- Часть третья катастрофы третьего класса
- 7. Бомбардировка земли
- Внеземные объекты
- Астероиды
- Метеориты
- Более длинный день
- Удаляющаяся луна
- Приближающаяся луна
- 9. Дрейф земной коры внутреннее тепло
- Катастрофизм
- Движущиеся континенты
- Вулканы
- Землетрясения
- Тектоническое будущее
- 10. Изменение погоды времена года
- Что двигает ледники?
- Орбитальные вариации
- Северный ледовитый океан
- Эффект оледенения
- 11. Перемещение магнетизма космические лучи
- Днк и мутации
- Генетический груз
- Магнитное поле земли
- Часть четвертая катастрофы четвертого класса
- 12. Конкуренция видов
- Крупные животные
- Мелкие животные
- Инфекционные болезни
- Микроорганизмы
- Новая болезнь
- 13. Конфликт интеллектов нечеловеческий интеллект
- Варвары
- От пороха к атомной бомбе
- Часть пятая катастрофы пятого класса
- 14. Истощение ресурсов
- Ресурсы возобновляемые
- Металлы
- Загрязнение
- Энергия старая
- Энергия новая
- Энергия обильная
- 15. Опасности победы население
- Образование
- Технология
- Компьютеры
- Послесловие