4.1. Формирование и эволюция Солнечной системы
Ни одна из большого числа различных моделей происхождения и развития Солнечной системы не удостоилась перевода в ранг общепризнанной теории.
Согласно гипотезе Канта – Лапласа система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи, находящейся во вращательном движении вокруг Солнца.
Впервые английский физик и астрофизик Дж.Х. Джинс (1877-1946) предположил, что когда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, превратилась в планеты. Учитывая огромное расстояние между звездами, такое столкновение кажется невероятным.
Из современных гипотез происхождения Солнечной системы наиболее известна электромагнитная гипотеза шведского астрофизика Х. Альфвена (1908-1995) и английского Ф. Хойла (1915-2001). Согласно этой теории первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того, как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде – Солнцу, но его магнитное поле остановило движущийся газ на различных расстояниях – как раз там, где находятся планеты. Гравитационные и магнитные силы повлияли на концентрацию и сгущение этого газа. В результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников.
Известна также гипотеза образования Солнечной системы из холодного газопылевого облака, окружающего Солнце, предложенная советским ученым О.Ю. Шмидтом (1891-1956).
Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвездного газопылевого облака. Это начальное облако было, вероятно, размером в несколько световых лет и являлось прародителем для нескольких звезд.
В процессе гравитационного сжатия размеры газопылевого облака уменьшились, и в силу закона сохранения углового момента, росла скорость вращения облака. Центр, где собралась большая часть массы, становился все более и более горячим, чем окружающий диск. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного протопланетного диска с диаметром примерно 200 а.е. и горячей, плотной протозвезды в центре. Полагают, что в этой точке эволюции Солнце было звездой типа Т Тельца. Изучение таких звезд показывает, что они часто сопровождаются протопланетными дисками с массами 0,001-0,1 солнечной массы, с подавляющим процентом массы туманности, сосредоточенным непосредственно в звезде. Планеты сформировались аккрецией из этого диска (рис. 26).
Рис. 26. Эволюция Солнца
В течение 50 млн лет давление и плотность водорода в центре протозвезды стали достаточно большими для начала термоядерных реакций. Температура, скорость реакции, давление и плотность увеличились, пока не было достигнуто гидростатическое равновесие, с тепловой энергией, противостоящей силе гравитационного сжатия. На этом этапе Солнце стало полноценной звездой главной последовательности.
Солнечная система просуществует, пока Солнце не начнет развиваться вне главной последовательности диаграммы Герцшпрунга-Рассела, которая показывает зависимость между яркостью звезд и температурой их поверхности. Более горячие звезды являются более яркими.
Солнце сжигает запасы водородного топлива, при этом выделяющаяся энергия имеет тенденцию к исчерпанию, заставляя Солнце сжиматься. Это увеличивает давление в его недрах и нагревает ядро, таким образом ускоряя сжигание топлива. В результате Солнце становится ярче на примерно 10% каждые 1,1 млрд лет.
Через приблизительно 5-6 млрд лет водород в ядре Солнца будет полностью преобразован в гелий, что завершит фазу главной последовательности. В это время внешние слои Солнца расширятся примерно в 260 раз – Солнце станет красным гигантом. Из-за чрезвычайно увеличивающейся площади поверхности она будет гораздо более прохладной, чем при нахождении на главной последовательности (2600 К).
В конечном счете, внешние слои Солнца будут выброшены мощным взрывом в окружающее пространство, образовав планетарную туманность, в центре которой останется лишь небольшое звездное ядро – белый карлик, необычно плотный объект в половину первоначальной массы Солнца, но размером с Землю. Эта туманность возвратит часть материала, который сформировал Солнце, в межзвездную среду.
Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.
Отсутствие общепризнанной версии происхождения планетной системы имеет свое объяснение. Прежде всего, единственность объекта наблюдения исключает применение сравнительного анализа и заставляет решать нелегкую задачу восстановления истории на основании одних только знаний о сегодняшнем состоянии Солнечной системы. Например, представления об эволюции звезд от их рождения до гибели получены благодаря накоплению и статистической обработке наблюдаемых данных о современном состоянии множества звезд разных классов, находящихся на разных стадиях развития. Неудивительно, что о развитии далеких от нас звезд астрономия знает существенно больше, чем о происхождении и развитии места нашего обитания – Солнечной системы.
Таким образом, солнечная система – очень сложное природное образование, сочетающее разнообразие составляющих ее элементов с высочайшей устойчивостью системы как целого. При огромном числе и разнообразии составляющих систему элементов, при тех сложных взаимоотношениях, которые устанавливаются между ними, задача определения механизма ее образования, оказывается очень непростой.
В Солнечную систему входят:
Солнце;
4 планеты земной группы: Меркурий, Венера, Земля, Марс и их спутники;
пояс малых планет-астероидов, куда входит планета-карлик Церера;
бесчисленное число метеоритных тел, движущихся как роями, так и одиночно.
4 планеты-гиганты: Юпитер, Сатурн, Уран, Нептун и их спутники;
сотни комет;
кентавры;
транснептуновые объекты: пояс Койпера, куда входят 4 планеты-карлика: Плутон, Хаумеа, Макемаке, Эрида и рассеянный диск;
отдаленные области, куда входят облако Оорта и Седна;
пограничные области.
- Министерство сельского хозяйства
- Содержание
- Раздел I
- Контрольные вопросы
- Глава 2
- 2.2. Эволюция представлений о пространстве и времени
- Контрольные вопросы
- Глава 3 структурные уровни и системная организация материи
- 3.1. Вселенная: микро-, макро - и мегамир
- 3.2. Структуры микромира
- 3.3. Процессы в микромире
- Контрольные вопросы
- Глава 4 смена физических картин мира
- 4.1. Механистическая картина мира
- 4.2. Электромагнитная картина мира
- 4.3. Квантово-полевая картина мира
- 4.4. Детерминистическое описание мира. Динамические закономерности в природе. Вероятностные и статистические законы
- 4.5. Необходимость и случайность. Принцип причинности и соответствия
- 4.6. Квантово-механическая концепция на современном уровне. Фундаментальные взаимодействия
- Контрольные вопросы
- Глава 5 концепция относительности пространства и времени
- 5.1. Специальная теория относительности (сто)
- 5.2. Общая теория относительности (ото)
- 5.3. Современная естественно-научная картина мира
- Контрольные вопросы
- Глава 6 принципы симметрии и законы сохранения
- Контрольные вопросы
- 7.2. Статистические свойства макросистем. Основные положения молекулярно-кинетической теории
- Контрольные вопросы
- 1.1. Исследование Вселенной. Астрофизика
- 1.2. Космонавтика
- Контрольные вопросы
- Глава 2 структура метагалактики
- 2.1. Галактики
- 2.2. Звезды
- Контрольные вопросы
- Глава 3 эволюция представлений о космологической модели вселенной
- 3.1. Особенности развития современной космологии
- 3.2. Модель Вселенной
- Контрольные вопросы
- Глава 4 солнечная система
- 4.1. Формирование и эволюция Солнечной системы
- 4.2. Солнце
- 4.3. Состав Солнечной системы
- Малые тела Солнечной системы
- Контрольные вопросы
- Глава 5 геологическая эволюция
- 5.1. Земля как планета,
- Ее отличия от других планет земной группы
- 5.2. Атмосфера Земли, ее структура и химический состав
- 5.3. Климат, погода и ее прогнозирование
- 5.4. Гидросфера Земли
- Контрольные вопросы
- Глава 6 взаимосвязь космоса и живой природы
- Контрольные вопросы
- Заключение Перспективы развития физики XXI в.
- Библиографический список
- Глоссарий
- Именной указатель
- Основные сокращения и обозначения
- Приложения
- Стодюймовый телескоп Хукера в обсерваторпии Маунт-Вилсон
- Галактика «Млечный путь»
- Природа темной материи
- Квазар зс 27
- Искривление пространства-времени
- Эффект Доплера
- Антропный принцип
- Пример действия антропного принципа
- Форма и направление времени
- Макарычев Сергей Владимирович