3.1. Ионосфера
Примерно в 80 километрах над континентами и океанами начинается слой нашей атмосферы, называемый ионосферой. Ионосфера может простираться вплоть до высоты 1000 км. В этой области коротковолновое излучение Солнца, а также естественное космическое излучение (высокоэнергичные частицы, приходящие к нам из областей Вселенной, находящихся далеко за пределами Солнечной системы) взаимодействуют с атомами и молекулами атмосферы. Ультрафиолетовое и рентгеновское излучение, высокоэнергичные частицы обладают энергией, достаточной для того, чтобы выбить электроны из атмосферных атомов и молекул и превратить их в свободные частицы. Поэтому эта часть атмосферы ионизована; она состоит из электрически заряженных атомов и молекул, а также свободных электронов. Область ионосферы богата кислородом и имеет высокую температуру-свыше 1000 К. Но воздух здесь столь разрежен, что, вопреки этой высокой температуре, он ничего не нагревает; температуру следует рассматривать лишь как меру скорости движения ионов и электронов. Так как Солнце является основным источником ионизующего излучения, разнообразные измеренные характеристики ионосферы меняются с изменением степени активности Солнца. Когда на Солнце мир и спокойствие, электронная плотность и протяженность ионосферы уменьшаются. Однако большие солнечные вспышки меняют это состояние и приводят ионосферу в возбужденное состояние.
До ракетного века ионосферу можно было исследовать лишь с помощью радиоволн. Однако в настоящее время, в эру спутниковых трансконтинентальных телевизионных передач телефонной и радиосвязи, легко забыть, что когда-то радиопередачи на большое расстояние полностью зависели от ионосферы. Так как эта область содержит много свободных электронов, она является хорошим проводником электричества, вследствие чего радиоволны с большой длиной волны отражаются от нее, как и от металлического экрана. Таким образом, радиосвязь с пунктами, находящимися за горизонтом, осуществляется за счет отражения радиоволн от нижней поверхности электропроводящей ионосферы. Такая связь причиняет довольно много неудобств, потому что ионосферный слой меняется в течение дня и зависит от времени года и уровня солнечной активности.
Именно ионосфера в основном не пропускает космическую радиацию (частицы, рентгеновское и ультрафиолетовое излучение), весьма опасную для человеческой жизни. Иногда мы говорим, что ионосфера защищает нас от вредного воздействия солнечной радиации. Хотя верхняя атмосфера и обеспечивает эту защиту, важно сознавать, что сложная сегодняшняя жизнь на Земле развивалась из более простых форм в среде, подвергавшейся очень слабому воздействию ультрафиолетового и рентгеновского излучения. Если бы ионосфера хуже защищала нас от внешних воздействий, жизнь, вероятно, развивалась бы иначе и организмы уже на стадии своего возникновения вынуждены были бы выработать у себя лучшую систему защиты от воздействия Солнца. Действительно, существуют простые примеры такого приспособления: темнокожие расы возникли в тропиках и темный цвет тела приобрели в силу необходимости защищаться от тех ультрафиолетовых лучей, которые не были поглощены воздухом уже ранее. Светлокожие люди могут приобрести темную пигментацию, подвергнув свою обнаженную кожу воздействию сильного солнечного света, но, если Вы - светлокожий, Вы, вероятно, на своем горьком опыте убедились, что стать темным можно лишь через несколько дней! Из-за того что жизнь развивалась под этим защитным покровом, мы не обладаем никакой естественной защитой от прямого воздействия Солнца. По этой причине и по ряду других необходимо, чтобы как космический корабль, так и одежда путешествующих в космосе имели специальный защитный экран.
Доза облучения, получаемая экипажами сверхзвуковых самолетов, летающих на очень больших высотах, должна непрерывно контролироваться медицинским персоналом. Пассажиры подвергаются меньшему риску даже в периоды высокой солнечной активности, так как они совершают значительно меньше высотных путешествий. После большой солнечной вспышки резко возрастает число высокоэнергичных частиц в окрестности Земли. Частицы, обладающие самой высокой энергией,- это протоны, выбрасываемые из Солнца со скоростью, близкой к скорости света. При сильной вспышке часть активной области действует подобно ускорителю частиц или установке для расщепления атомного ядра. Эти релятивистские протоны достигают Земли почти в то же время, когда мы обнаруживаем вспышку с помощью наших телескопов. Они вторгаются в атмосферу и с большой силой сталкиваются с атомами. При этом возникают нейтронные ливни, которые обнаруживаются с помощью наземных инструментов. Мощная солнечная вспышка вызывает увеличение скорости счета нейтронов на уровне Земли в десять-двадцать раз. Эти нейтроны не причинят Вам вреда, но вот протонам, движущимся со скоростью света, не потребуется много времени для того, чтобы уничтожить Вас мучительной смертью. По этой причине за поведением Солнца обычно и ведется столь тщательное наблюдение, когда астронавтам необходимо выполнить какую-то работу непосредственно в космическом пространстве или на Луне, в то время как они защищены одними лишь скафандрами.
Солнце и его меняющееся излучение ответственны за некоторые из явлений, мешающих радиолюбителям. В качестве лишь одного примера приведем затухание на коротких радиоволнах. Это - внезапное прекращение приема радиопередач на коротких волнах. Оно происходит тогда, когда Солнце вызывает повышенную ионизацию в самом нижнем слое ионосферы, который и поглощает сигнал. На очень низких частотах отражающие свойства ионосферы значительно лучше, поэтому низкочастотные электромагнитные волны, генерируемые во время естественных гроз, легко преодолевают большие расстояния. Это приводит к значительному росту регистрируемого числа гроз, треск от которых в виде атмосфериков принимается радиоприемником.
Yandex.RTB R-A-252273-3