6.7. Спектрометрическая съемка
Этот вид съемки позволяет получать данные о спектральных отражательных свойствах природных объектов. Спектрометрирование может выполняться в видимом и ближнем инфракрасном диапазоне спектра электромагнитного излучения. Для спектрометрической съемки используются специальные приборы, которые называются спектрометрами. В Институте физики НАН Беларуси создана микропроцессорная спектрометрическая система «Скиф», а в НИИ ПФП им. Севченко под руководством доктора физико-математических наук Беляева Б.И. создана бортовая модульная микропроцессорная спектрометрическая система «Гемма», аэрокосмическая интерактивная видеоспектрополяриметрическая система «Гемма-2», а также авиационный аппаратно-программный комплекс ВСК-2, которые и в настоящее время используются для проведения аэрокосмических съемок.
При спектрометрировании местности одновременно ведется ее фотографическая или телевизионная съемка для привязки результатов спектрометрирования. Результаты спектрометрической съемки получаются в виде кривых хода яркости по спектру – регистрограммы, либо сразу на экране электронно-лучевой трубки. Обработка результатов спектрометрических съемок довольно трудоемкий процесс, поэтому ведутся исследования по их автоматизации.
При спектрометрической съемке из космоса существенным препятствием является атмосфера, которая селективно (выборочно) рассеивает солнечную радиацию и ослабляет отраженное земной поверхностью излучение, искажая тем самым полученные данные. Для выявления степени влияния атмосферы одновременно проводятся наземные наблюдения, а также с самолета и с космических летательных аппаратов.
Кроме того, знание отражательных и излучательных свойств различных объектов, позволяет наиболее эффективно подбирать фотоматериалы как для съемок, так и для дешифрирования определенных объектов.
С использование спектрометрической съемки можно решать следующие задачи:
- определение концентрации озона и углекислого газа в атмосфере,наличие нефтяной пленки на водной поверхности;
- изучение снежного покрова и льда;
- определение содержания паров в атмосфере;
- изучение влажности почвогрунтов.
- 1.2. Роль и значение аэрокосмических методов в географических исследованиях
- 2.1. Воздухоплавание
- 2.2. Авиация
- 2.3. Ракеты
- 2.4. Космические летательные аппараты
- 3.1. Летательные аппараты для воздушной съемки
- 3.2.1. Автоматические космические аппараты
- .Космические аппараты для полетов к Луне. Для изучения поверхности Луны использовались советские автоматические межпланетные станции (амс) «Зонд» и автоматические лунные станции серии «Луна».
- 3.2.2. Пилотируемые космические аппараты
- 3.2.3. Перспективные космические аппараты
- Солнечное излучение и его отражение объектами земной поверхности
- 4.2. Собственное излучение Земли
- 4.3. Искусственное излучение
- 4.4. Влияние атмосферы на излучение
- 5. Методы регистрации электромагнитного излучения
- 6. Виды аэрокосмических съёмок
- 6.1. Фотографическая съёмка
- 6.2. Телевизионная съемка
- 6.3. Сканерная съемка
- 6.4. Инфракрасная и инфракрасная тепловая съемки
- 6.5. Радиотепловая съемка
- 6.6. Радиолокационная съемка
- 6.7. Спектрометрическая съемка
- 6.8. Лазерная съемка
- 6.9. Разрешающая способность материалов дистанционных съемок
- 7.1. Центральная проекция снимка
- 7.2. Масштаб снимка
- 7.3. Геометрические искажения снимка, вызванные рельефом местности, его наклоном, кривизной Земли
- 9. Информационные свойства снимков
- 10. Теоретические основы дешифрирования аэрокосмических снимков
- 10.1. Дешифровочные признаки
- 10.1.1. Прямые признаки дешифрирования
- Количественные характеристики плотности изображени
- 10.1.2. Косвенные дешифровочные признаки
- 10.2. Логическая структура процесса дешифрирования
- 11. Технология и методы дешифрирования снимков
- 11.1. Материалы аэрокосмической съемки
- 11.4. Геоинформационные технологии в аэрокосмических исследованиях
- 13. Аэрокосмический мониторинг