9.Типы радиоактивного распада
α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).
α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А≥140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны.
β-распад - это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино. β-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d-кварков в одном из нейтронов ядра в u-кварк; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино.
После β − - распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.
Позитро́нный распа́д — тип бета-распада, также иногда называемый «бета-плюс-распад» (β+-распад), «эмиссия позитронов» или «позитронная эмиссия». В β+-распаде один из протонов ядра превращается посредством слабого взаимодействия в нейтрон, позитрон и электронное нейтрино.
Электро́нный захва́т, e-захват — один из видов бета-распада атомных ядер. При электронном захвате один из протонов ядра захватывает орбитальный электрон и превращается в нейтрон, испуская электронное нейтрино. Заряд ядра при этом уменьшается на единицу. Массовое число ядра, как и во всех других видах бета-распада, не изменяется. Поскольку число протонов в ядре (т.е. заряд ядра) при электронном захвате уменьшается, этот процесс превращает ядро одного химического элемента в ядро другого элемента, расположенного ближе к началу таблицы Менделеева.
Спонта́нное деле́ние — разновидность радиоактивного распада тяжёлых ядер. Спонтанное деление является делением ядра, происходящим без внешнего возбуждения, и выдаёт такие же продукты, как и вынужденное деление: два осколка и несколько нейтронов.
Кластерный распад — явление самопроизвольного испускания ядрами ядерных фрагментов (кластеров) тяжелее, чем α-частица. В настоящее время экспериментально обнаружено 25 ядер от 114Ba до 241Аm (почти все они — тяжёлые), испускающих из основных состояний кластеры типа 14С, 20О, 24Ne, 26Ne, 28Mg, 30Mg, 32Si и 34Si.
Гамма распад (изомерный переход) – коротковолновое электромагнитное излучение, выделение гамма квантов при переходе атома из возбужденного состояния в основное. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). Гамма- излучение возникает при распадах радиоактивных ядер, элементарных частиц, при аннигиляции пар частицы- античастица, а также при прохождении быстрых заряженных частиц через вещество.
- 1.Основные этапы развития геохимии
- 2.Задачи геохимии
- 3.Строение атома
- 4.Типы химической связи
- 5.Гомодесмические и гетеродесмические структуры
- 7.Геометрические типы структур
- Радиоактивность
- 9.Типы радиоактивного распада
- 10.Радиогенные изотопы
- 11. Закон радиоактивного распада, период полураспада
- 12.Радиогенные изотопы как трассеры геохимических процессов
- 13.Методы определения абсолютного возраста.
- 14.Методы датирования по обычному свинцу
- 17.Классификация силикатов и алюмосиликатов
- 18. Силикаты с непрерывными цепочками или лентами тетраэдров SiO4
- 19. Номенклатура пироксенов
- 20. Силикаты со сдвоенными анионными цепочками
- 21.Силикаты с непрерывными трехмерными каркасами из тетраэдров (Si, Al) o4
- 22.Правило фаз Гиббса
- 23. Однокомпонентные системы
- 24.Двухкомпонентные системы при отсутствии твердых растворов и соединений
- 25.Двухкомпонентная система при отсутствии твердых растворов с промежуточным соединением
- 26. Двухкомпонентные системы с соединением плавящимся инконгруэнтно
- 27.Диаграммы двухкомпонентных систем с твердыми растворами.
- 28. Астероиды
- 29. Классификация метеоритов
- 30. Происхождение Солнечной системы
- 31. Планеты земной группы
- 32. Планеты-гиганты
- 33. Хондритовая модель происхождения Земли
- 34. Происхождение Луны
- 35. Образование слоистой структуры Земли
- 36.Ядро и мантия Земли
- 37.Космохимическая оценка состава мантии.
- 38.Номенклатура ультраосновных пород
- 39.Причины существования скачков в скоростях распространения сейсмических волн в мантии.
- 40.Факторы, контролирующие распределение элементов между корой и мантией.
- 41. Свидетельства мантийной гетерогенности.
- 42. Причины химических вариаций в мантии
- 43. Геохимические отличия базальтов срединно-океанических хребтов от базальтов океанических островов.
- 44. Минералы земной коры
- 45. Классификации вулканических и плутонических пород
- 46.Фации метаморфизма
- 47.Строение континентальной коры
- 48. Методы оценки состава верхней коры
- 49.Средняя континентальная кора
- 50.Нижняя континентальная кора
- 51.Образование континентальной коры
- 52.Происхождение адакитов
- 53.Происхождение тоналит-трондьемит-гранодиоритовой серии
- 54.Проблема формирования гранитоидов
- 55. Состав и строение атмосферы Земли
- 56.Происхождение атмосферы Земли.
- 57.Атмосфера на ранней стадии развития Земли