4.Типы химической связи
Химическая связь — явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы. Термин «химическое строение» впервые ввёл А. М. Бутлеров в 1861 году.
Ковалентная связь – наиболее общий вид химической связи, возникающий за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону, или по донорно-акцепторному механизму, если электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору).
При образовании гетероатомной ковалентной связи электронная пара смещена к более электроотрицательному атому, что делает такую связь полярной. Ионность полярной связи в процентах вычисляется по эмпирическому соотношению 16(χA – χB) + 3,5(χA – χB)2, где χA и χB – электроотрицательности атомов А и В молекулы АВ. Кроме поляризуемости ковалентная связь обладает свойством насыщаемости – способностью атома образовывать столько ковалентных связей, сколько у него имеется энергетически доступных атомных орбиталей.
Классический пример неполярной ковалентной связи (разность электроотрицательностей равна нулю) наблюдается у гомоядерных молекул: H–H, F–F. Энергия двухэлектронной двухцентровой связи лежит в пределах 200–2000 кДж∙моль–1.
Гибридизация орбиталей - это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей.
sp- Гибридизация. Одна s- орбиталь и одна p- орбиталь превращаются в две одинаковые "гибридные" орбитали, угол между осями которых равен 180°.
sp2 Гибридизация. Одна s- орбиталь и две p- орбитали превращаются в три одинаковые "гибридные" орбитали, угол между осями которых равен 120°.
sp3- Гибридизация. Одна s- орбиталь и три p- орбитали превращаются в четыре одинаковые "гибридные" орбитали, угол между осями которых равен 109°28'.Молекулы, в которых осуществляется sp3- гибридизация, имеют тетраэдрическую геометрию (CH4, NH3).
Если связь образуется при перекрывании орбиталей по линии, соединяющей ядра атомов, она называется s- связью. Если орбитали перекрываются вне линии, соединяющей ядра, то образуется p- связь. Три sp2- орбитали могут образовывать три s- связи (BF3, AlCl3). Еще одна связь (p- связь) может образоваться, если на p- орбитали, не участвующей в гибридизации, находится электрон (этилен C2H4).
Ионная связь – частный случай ковалентной, когда образовавшаяся электронная пара полностью принадлежит более электроотрицательному атому, становящемуся анионом. Основой для выделения этой связи в отдельный тип служит то обстоятельство, что соединения с такой связью можно описывать в электростатическом приближении, считая ионную связь обусловленной притяжением положительных и отрицательных ионов. Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщености. Поэтому каждый ион в ионном соединении притягивает такое число ионов противоположного знака, чтобы образовалась кристаллическая решетка ионного типа. В ионном кристалле нет молекул. Каждый ион окружен определенным числом ионов другого знака (координационное число иона). Ионные пары могут существовать в газообразном состоянии в виде полярных молекул. В газообразном состоянии NaCl имеет дипольный момент ~3∙10–29 Кл∙м, что соответствует смещению 0,8 заряда электрона на длину связи 0,236 нм от Na к Cl, т. е. Na0,8+Cl0,8–.
Для кристаллических веществ с ионным типом связи обычно характерны диэлектрические свойства, хрупкость, средние значения твердости и плотности, низкая теплопроводность.
Металлическая связь возникает в результате частичной делокализации валентных электронов, которые достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с положительно заряженными ионами. Силы связи не локализованы и не направлены, а делокализированные электроны обусловливают высокую тепло- и электропроводность.
Металлическая связь характерна для элементов первых групп периодической системы и интерметаллидов.
Модели структур с металлической связью строятся из атомов одинакового или близкого размеров, уложенных наиболее компактным образом. В результате каждый атом стремится окружить себя максимальным числом ближайших соседей. Поэтому для металлических структур характерны большие координационные числа (КЧ -8,12) плотные и плотнейшие упаковки частиц, а также ряд специфических свойств: высокие тепло и электропроводность, ковкость, невысокие температуры плавления и кипения, существование свободно перемещающихся электронов.
Водородная связь. Ее образование обусловлено тем, что в результате сильного смещения электронной пары к электроотрицательному атому атом водорода, обладающий эффективным положительным зарядом, может взаимодействовать с другим электроотрицательным атомом (F, O, N, реже Cl, Br, S). Энергия такого электростатического взаимодействия составляет 20–100 кДж∙моль–1. Водородные связи могут быть внутри- и межмолекулярными. Внутримолекулярная водородная связь образуется, например, в ацетилацетоне и сопровождается замыканием цикла.
Исключительно важную роль водородная связь играет в биологических макромолекулах, таких неорганических соединениях как H2O, H2F2, NH3. За счет водородных связей вода характеризуется столь высокими по сравнению с H2Э (Э = S, Se, Te) температурами плавления и кипения. Если бы водородные связи отсутствовали, то вода плавилась бы при –100 °С, а кипела при –80 °С.
Ван-дер-ваальсова (межмолекулярная) связь – наиболее универсальный вид межмолекулярной связи, обусловлен дисперсионными силами (индуцированный диполь – индуцированный диполь), индукционным взаимодействием (постоянный диполь – индуцированный диполь) и ориентационным взаимодействием (постоянный диполь – постоянный диполь). Энергия ван-дер-ваальсовой связи меньше водородной и составляет 2–20 кДж∙моль–1.
- 1.Основные этапы развития геохимии
- 2.Задачи геохимии
- 3.Строение атома
- 4.Типы химической связи
- 5.Гомодесмические и гетеродесмические структуры
- 7.Геометрические типы структур
- Радиоактивность
- 9.Типы радиоактивного распада
- 10.Радиогенные изотопы
- 11. Закон радиоактивного распада, период полураспада
- 12.Радиогенные изотопы как трассеры геохимических процессов
- 13.Методы определения абсолютного возраста.
- 14.Методы датирования по обычному свинцу
- 17.Классификация силикатов и алюмосиликатов
- 18. Силикаты с непрерывными цепочками или лентами тетраэдров SiO4
- 19. Номенклатура пироксенов
- 20. Силикаты со сдвоенными анионными цепочками
- 21.Силикаты с непрерывными трехмерными каркасами из тетраэдров (Si, Al) o4
- 22.Правило фаз Гиббса
- 23. Однокомпонентные системы
- 24.Двухкомпонентные системы при отсутствии твердых растворов и соединений
- 25.Двухкомпонентная система при отсутствии твердых растворов с промежуточным соединением
- 26. Двухкомпонентные системы с соединением плавящимся инконгруэнтно
- 27.Диаграммы двухкомпонентных систем с твердыми растворами.
- 28. Астероиды
- 29. Классификация метеоритов
- 30. Происхождение Солнечной системы
- 31. Планеты земной группы
- 32. Планеты-гиганты
- 33. Хондритовая модель происхождения Земли
- 34. Происхождение Луны
- 35. Образование слоистой структуры Земли
- 36.Ядро и мантия Земли
- 37.Космохимическая оценка состава мантии.
- 38.Номенклатура ультраосновных пород
- 39.Причины существования скачков в скоростях распространения сейсмических волн в мантии.
- 40.Факторы, контролирующие распределение элементов между корой и мантией.
- 41. Свидетельства мантийной гетерогенности.
- 42. Причины химических вариаций в мантии
- 43. Геохимические отличия базальтов срединно-океанических хребтов от базальтов океанических островов.
- 44. Минералы земной коры
- 45. Классификации вулканических и плутонических пород
- 46.Фации метаморфизма
- 47.Строение континентальной коры
- 48. Методы оценки состава верхней коры
- 49.Средняя континентальная кора
- 50.Нижняя континентальная кора
- 51.Образование континентальной коры
- 52.Происхождение адакитов
- 53.Происхождение тоналит-трондьемит-гранодиоритовой серии
- 54.Проблема формирования гранитоидов
- 55. Состав и строение атмосферы Земли
- 56.Происхождение атмосферы Земли.
- 57.Атмосфера на ранней стадии развития Земли