3.Строение атома
А́том (др.-греч. ἄτομος — неделимый) — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и электрически нейтральных нейтронов, а окружающее его облако состоит из отрицательно заряженных электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.
Модели атома:
а) Томсона («сливовый пудинг», модель «Пудинг с изюмом», англ. Plumpuddingmodel). Дж. Дж. Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Эта модель не объясняла дискретный характер излучения атома и его устойчивость. Была окончательно опровергнута Резерфордом после проведённого им знаменитого опыта по рассеиванию альфа-частиц.
б) Резерфорд. Проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно.
в) планетарная модель Бора. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.
Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).
Электро́нво́льт (сокращённо эВ или eV) — внесистемная единица измерения энергии, широко используемая в атомной и квантовой физике. Один электронвольт равен энергии, которая необходима для переноса электрона в электростатическом поле между точками с разницей потенциалов 1В. Так как работа при переносе заряда q равна qU (где U — разность потенциалов), а заряд электрона составляет −, 1,602 176 487(40)×10−19 Кл то
1 эВ = 1,602 176 487(40)×10−19 Дж = 1,602 176 487(40)×10−12 эрг.
Атомная единица массы (а.е.м.) равна 1/12 массы m атома углерода 12С (m одного атома 12С равна 1,993 • 10-26 кг).
Относительная атомная масса элемента («атомная масса, «атомный вес») (Ar) – это безразмерная величина, равная отношению средней массы атома элемента к 1/12 массы атома 12С. При расчете относительной атомной массы учитывается изотопный состав элемента.
Абсолютная масса атома (m) равна относительной атомной массе, умноженной на 1 а.е.м. Например, для атома водорода абсолютная масса определяется следующим образом:
m(H) = 1,008 • 1,661 • 10-27 кг = 1,674 • 10-27 кг
Важным шагом на пути создания теoрии строения атомов явилось предположение М. Планка, что энергия электромагнитного излучения выделяется порциями, или квантами. Энергия излучения одного кванта равна:
E =hυ, h - коэффициент пропорциональности (постоянная Планка)
В 1913 году Н. Бор предложил теорию строения атома. Он постулировал, что для электрона в атоме водорода допустимы только такие орбиты, на которых угловой момент электрона представляет собой целочисленное кратное постоянной Планка деленное на 2:
mevr = n (h/2)
Постулат Бора приводит к ограничению энергии электрона в атоме водорода значениями E = -k/n2 где n = 1,2,3,4,… k – константа зависящая только от постоянной Планка, массы электрона и его заряда: k = 22mee4/h2
В атоме существуют орбиты, находясь на которых электрон не излучает энергию. Эти орбиты называются стационарными.
Атомы состоят из положительно заряженного ядра и электронного облака. а) состав ядра атома водорода входит только 1 протон, а электронное облако заполняется одним электроном. б) В ядре атома углерода 6 протонов и 6 нейтронов, а в электронном облаке - 6 электронов. в) Существует также изотопный углерод, ядре которого на 1 нейтрон больше. Содержание этого изотопа в природном углероде составляет чуть более 1% (об изотопах см. ниже). Линейные размеры атомов очень малы: их радиусы составляют от 1 до 2,5 ангстрема (1 ангстрем = 10-8 см). Радиус ядра около 10-5 ангстрема, то есть 10-13 см. Это в 100000 раз меньше размеров электронной оболочки. Поэтому правильно показать отноительные пропорции ядер и электронных оболочек на рисунке невозможно. Если бы атом увеличился до размеров Земли, то ядро имело бы всего около 60 м в диаметре и могло бы поместиться на футбольном поле.
Электрон является самой лёгкой из составляющих атом частиц с массой 9,11×10−28 г, отрицательным зарядом и размером, слишком малым для измерения современными методами.[11] Протоны обладают положительным зарядом и в 1836 раз тяжелее электрона (1,6726×10−24 г). Нейтроны не обладают электрическим зарядом и в 1839 раз тяжелее электрона (1,6929×10−24 г).[12] При этом масса ядра меньше суммы масс составляющих её протонов и нейтронов из-за эффекта дефекта массы.
Атомы элементов стремятся к наиболее устойчивой электронной конфигурации. Устойчивой является электронная конфигурация с завершенным внешним электронным уровнем из (s2 + p6), т.е. из октета электронов.
Энергия электрона в основном определяется главным квантовым числом n и побочным квантовым числом l, поэтому сначала заполняются те подуровни, для которых сумма значений квантовых чисел n и l является наименьшей. Например, энергия электрона на подуровне 4s меньше, чем на подуровне 3d, так как в первом случае n + 1 = 4 + 0 = 4, а во втором n + l = 3 + 2 =5; на подуровне 5s (n + l = 5 + 0 = 5) энергия меньше, чем на 4d (n + l = 4 + 2 = 6); на 5р (n + l = 5 + 1 = 6) энергия меньше, чем на 4f (n + l = 4 + 3 = 7) и т.д.
Энергия электрона в основном определяется главным квантовым числом n и побочным квантовым числом l, поэтому сначала заполняются те подуровни, для которых сумма значений квантовых чисел n и l является наименьшей. Например, энергия электрона на подуровне 4s меньше, чем на подуровне 3d, так как в первом случае n + 1 = 4 + 0 = 4, а во втором n + l = 3 + 2 =5; на подуровне 5s (n + l = 5 + 0 = 5) энергия меньше, чем на 4d (n + l = 4 + 2 = 6); на 5р (n + l = 5 + 1 = 6) энергия меньше, чем на 4f (n + l = 4 + 3 = 7) и т.д.
По правилу Гунда при заполнении электронами одинаковых орбиталей электроны располагаются в первую очередь по одиночке на каждой орбитали, и лишь потом начинается заселение этих орбиталей вторыми электронами.
Принцип Паули:Никакие два электрона в одном атоме не могут характеризоваться одинаковым набором всех четырех квантовых чисел n, l, m, s.
- 1.Основные этапы развития геохимии
- 2.Задачи геохимии
- 3.Строение атома
- 4.Типы химической связи
- 5.Гомодесмические и гетеродесмические структуры
- 7.Геометрические типы структур
- Радиоактивность
- 9.Типы радиоактивного распада
- 10.Радиогенные изотопы
- 11. Закон радиоактивного распада, период полураспада
- 12.Радиогенные изотопы как трассеры геохимических процессов
- 13.Методы определения абсолютного возраста.
- 14.Методы датирования по обычному свинцу
- 17.Классификация силикатов и алюмосиликатов
- 18. Силикаты с непрерывными цепочками или лентами тетраэдров SiO4
- 19. Номенклатура пироксенов
- 20. Силикаты со сдвоенными анионными цепочками
- 21.Силикаты с непрерывными трехмерными каркасами из тетраэдров (Si, Al) o4
- 22.Правило фаз Гиббса
- 23. Однокомпонентные системы
- 24.Двухкомпонентные системы при отсутствии твердых растворов и соединений
- 25.Двухкомпонентная система при отсутствии твердых растворов с промежуточным соединением
- 26. Двухкомпонентные системы с соединением плавящимся инконгруэнтно
- 27.Диаграммы двухкомпонентных систем с твердыми растворами.
- 28. Астероиды
- 29. Классификация метеоритов
- 30. Происхождение Солнечной системы
- 31. Планеты земной группы
- 32. Планеты-гиганты
- 33. Хондритовая модель происхождения Земли
- 34. Происхождение Луны
- 35. Образование слоистой структуры Земли
- 36.Ядро и мантия Земли
- 37.Космохимическая оценка состава мантии.
- 38.Номенклатура ультраосновных пород
- 39.Причины существования скачков в скоростях распространения сейсмических волн в мантии.
- 40.Факторы, контролирующие распределение элементов между корой и мантией.
- 41. Свидетельства мантийной гетерогенности.
- 42. Причины химических вариаций в мантии
- 43. Геохимические отличия базальтов срединно-океанических хребтов от базальтов океанических островов.
- 44. Минералы земной коры
- 45. Классификации вулканических и плутонических пород
- 46.Фации метаморфизма
- 47.Строение континентальной коры
- 48. Методы оценки состава верхней коры
- 49.Средняя континентальная кора
- 50.Нижняя континентальная кора
- 51.Образование континентальной коры
- 52.Происхождение адакитов
- 53.Происхождение тоналит-трондьемит-гранодиоритовой серии
- 54.Проблема формирования гранитоидов
- 55. Состав и строение атмосферы Земли
- 56.Происхождение атмосферы Земли.
- 57.Атмосфера на ранней стадии развития Земли