logo search
Открытие квазаров

1.10 Пропавшие квазары

В 2000 году группа австралийских астроном во главе с Р.Уэбстер (R.Webster; Мельбурнский университет) пришла к весьма неожиданному выводу: среди всех существующих во Вселенной квазаров около 80% остаются неоткрытыми. Как известно, квазар - невероятно мощный точечный источник радиоизлучения; по одной из гипотез, он представляет собой удаленную активную галактику, которая получает энергию в результате аккреции вещества на сверхмассивную черную дыру, находящуюся в центре квазара. Проведя наблюдения нескольких сот квазаров, австралийские ученые обнаружили, что излучение около 80% из них необычайно сильно сдвинуто в красную часть спектра. Астрономы же, работающие с оптическими приборами, ищут квазары, как правило, среди голубых объектов. Если большинство квазаров - красные, значит, основная их масса нам все еще неизвестна. Однако в марте 1996 г. английские астрономы С.Серджент и С.Ролингс "успокоили " своих коллег, показав, что квазары, наблюдавшиеся австралийскими учеными, "нетипичны ". Уэбстер и ее сотрудники полагали, что "покраснение " изучаемых объектов вызвано космической пылью, присутствующей в любой околоквазарной области. Однако английские астрономы указывают, что квазары, наблюдавшиеся австралийцами, обладают плоским, "сплющенным " радиоспектром. Другими словами, спектральная яркость их излучения в радиодиапазоне с повышением частоты понижается очень медленно. А это считается важным признаком таких объектов. Квазары, изучавшиеся группой Уэбстер, сильно излучают на высоких радиочастотах - в красной области оптического спектра. В таком случае наблюдаемое красное излучение вызывается не космической пылью, а имеет ту же синхротронную природу, что и радиоизлучение квазаров: заряженные электроны излучают, двигаясь с релятивистской скоростью по спирали вдоль магнитно-силовых линий. Но при этом возбуждается лишь плоский спектр красного излучения, что характерно лишь для небольшой группы квазаров. Таким образом, число "упущенных " астрономами квазаров никак не может быть значительным [4, 69]. Астрономы наконец-то увидели квазары второго типа. Предположение о существовании квазаров второго типа было впервые озвучено в начале 80-х годов, когда была построена единая модель квазаров и других ярких объектов, подпитывающихся энергией от массивных черных дыр. Обычные квазары находятся на расстоянии нескольких миллиардов световых лет от Земли. Квазар второго типа, как и обычный квазар, является очень ярким источником рентгеновского и другого излучения, но в отличие от первых окружены облаком газа и пыли, которое уменьшает его яркость в видимом диапазоне длин волн. Иначе говоря, до недавнего времени увидеть квазар второго типа никому не удавалось. И вот на днях человеческий взгляд впервые взглянул на этот астрономический объект. По заявлению астрономов, эта находка является важным шагом на пути к пониманию того как на заре существования Вселенной образовали черные дыры и галактики. В работах принимали участие специалисты из нескольких обсерваторий из разных стран мира, в том числе из университета Джонса Хопкинса и Южной Европейской Обсерватории. Для поиска квазара второго типа были использованы рентгеновский космический телескоп "Chandra" и наземный Большой Телескоп Very Large Telescope (VLT) из Южной Европейской обсерватории в Чили. Найденный квазар второго типа расположен в южном созвездии Печь на расстоянии 9 миллиардов световых лет от Земли.

Квазары -- это яркие источники излучения в оптической и других частях спектра. Обычно они находятся в центре какой-либо галактики. Среди астрофизиков распространено мнение, что квазар представляет собой сравнительно небольшой горячий газовый диск, окружающий черную дыру, масса которой может составлять 1011 масс Солнца.

Недавно специалисты полагали, что радиогалактики устроены иначе, чем "квазарные". Однако, после того как обнаружили в центре радиогалактики Лебедь А, расположенной в 750 млн. св. лет от нас, крошечный источник инфракрасного излучения, совпадающий с радиоисточником, мнение кардинально поменялось относительно устройства всех галактик. Инфракрасный источник похож на квазар, но он удивительно слаб и невидим в оптической области. Известно, что яркость квазара в инфракрасных лучах пропорциональна его интенсивности в рентгеновском диапазоне. Галактика Лебедь А -- мощный источник рентгеновского излучения. Соответствующий ему по интенсивности квазар должен бы излучать в инфракрасном диапазоне в 200 раз сильнее, чем наблюдается. Такой квазар можно было бы легко наблюдать в оптическом диапазоне. В дальнейшем, ученые пришли к выводу, что в центре радиогалактики Лебедь А расположен именно квазар, однако, он экранируется тороидальным облаком газа и космической пыли ("бубликом"). Установлено, что инфракрасный источник в центре Лебедя А лежит за плотным водородным облаком. Очевидно, оно и есть часть того же "бублика" с диаметром около 10 св. лет, который был ранее обнаружен. С Земли "бублик" виден с торца, поэтому излучение, идущее к нам из центра галактики, должно пройти сквозь довольно плотное скопление материи. Согласно наблюдениям астрономов, скопление пропускает не более 1/200 всего инфракрасного излучения, поступающего из находящегося внутри него объекта. Если бы не это обстоятельство, квазар, лежащий в центре Лебедя А, выглядел бы в 10 раз ярче, чем окружающая его галактика. Этот квазар -- заурядный среди подобных объектов, но он, по-видимому, самый близкий к нам. Следующий за ним по расстоянию квазар ЗС 273 обладает в 30 раз большей светимостью [4, 96]. Открытие подтверждает бывшее до сих пор чисто теоретическим утверждение, согласно которому все активные галактики устроены в основном одинаково, но при наблюдении с Земли они могут выглядеть различно -- в зависимости от своей ориентации относительно нас.