logo
Лекции по астрономии

§ 1.14. Связь среднего солнечного времени со звездным

Из многолетних наблюдений установлено, что в тропическом году содержится 365,2422 средних солнечных суток. Под тропическим годом понимается промежуток времени между двумя последовательными прохождениями Солнцем точки весеннего равноденствия. Нетрудно показать, что звездных суток в тропическом году на единицу больше, т.е. 366,2422.

Действительно, предположим, что в момент весеннего равноденствия некоторого года среднее экваториальное солнце и точка весеннего равноденствия находятся в верхней кульминации. Спустя одни звездные сутки точка весеннего равноденствия снова придет на небесный меридиан, а среднее экваториальное солнце не дойдет до него, так как за звездные сутки оно сместится по небесному экватору к востоку на дугу примерно в 1°. Оно пройдет небесный меридиан после поворота небесной сферы на этот угол, на что потребуется около 4m времени, а точнее Зm56s. Следовательно, средние сутки продолжительнее звездных суток на Зm56s.

Отходя каждые звездные сутки к востоку на дугу в 3m56s (или ~1°), среднее экваториальное солнце на протяжении тропического года обойдет весь небесный экватор (подобно одному видимому обороту Солнца по эклиптике) и в момент следующего весеннего равноденствия снова придет в точку весеннего равноденствия. Но в этот момент часовой угол среднего солнца и точки весеннего равноденствия будут отличаться от нуля, так как тропический год не содержит целого числа ни звездных, ни средних суток.

Иными словами,

365,2422 средн. солн. суток = 366,2422 звездн. суток,

откуда

и

Коэффициент

(1.24)

служит для перевода промежутков среднего солнечного времени в промежутки звездного времени, а коэффициент

(1.25)

— для перевода промежутков звездного времени в промежутки среднего солнечного времени. Таким образом, если промежуток времени в средних солнечных единицах есть Tm, а в звездных единицах s, то

(1.26)

Для приближенных расчетов можно считать, что звездные сутки короче средних (или, наоборот, средние длиннее звездных) приблизительно на 4m, а один звездный час короче среднего (или средний длиннее звездного) — на 10s.

Пусть звездное время в некоторый момент на данном меридиане равно s, а звездное время в ближайшую предшествующую среднюю полночь на этом же меридиане было S. Значит, после полуночи прошло (sS) часов, минут и секунд звездного времени. Этот промежуток, если его выразить в единицах среднего солнечного времени, равен (sS)К' часам, минутам и секундам среднего времени. А так как в среднюю полночь среднее солнечное время равно 0h, то, следовательно, в момент s по звездному времени среднее солнечное время будет Тт = (sS)К'.

Наоборот, пусть среднее время в некоторый момент на данном меридиане равно Тт. Это значит, что после средней полуночи прошло Тт часов, минут и секунд среднего времени. Этот промежуток времени равен ТmК звездных часов, минут и секунд, которые прошли от средней полуночи. И если в среднюю цолночь определенной даты на данном меридиане звездное время было S, то в момент Тт звездное время будет s = S + ТmК.

Таким образом, в обоих случаях нужно знать звездное время S в среднюю полночь на данном меридиане.

В астрономических ежегодниках дается звездное время S0 для каждой средней полуночи на меридиане Гринвича. Зная S0, легко вычислить S на любом другом меридиане, если известна его долгота от Гринвича , выраженная в часах и долях часа.