logo
Большой азимутальный телескоп

1. Краткий обзор некоторых телескопов

Большой Южно-Африканский Телескоп SALT [1]

В 1970-х гг. главные обсерватории ЮАР были объединены в Южно-Африканскую Астрономическую Обсерваторию. Штаб-квартира находится в г. Кейптауне. Основные инструменты - четыре телескопа (1.9-м, 1.0-м, 0.75-м и 0.5-м) - расположены в 370 км от города в глубине страны, на холме, возвышающемся на сухом плато Кару (Karoo).

В 1948 г. в ЮАР построили 1,9-м телескоп, это был самый большой инструмент в Южном полушарии. В 90-х гг. прошлого века научные круги и правительство ЮАР решили, что южно-африканская астрономия не может оставаться конкурентоспособной в XXI столетии без современного большого телескопа. Первоначально рассматривался проект 4-м телескопа, подобного ESO NTT (New Technology Telescope - Телескоп Новой Технологии) или более современному, WIYN, - на обсерватории Китт-Пик. Однако, в конце концов выбрана концепция большого телескопа - аналога установленного на обсерватории Мак-Дональд (США) телескопа Хобби-Эберли (Hobby-Eberly Telescope - HET). Проект получил название - Большой Южно-Африканский Телескоп, в оригинале - Southern African Large Telescope (SALT).

Рисунок 1 -конструкция телескопа (SALT) БЮАТ

Большой Южно-Африканский Телескоп (Southern Afriсan Lаrge Telescope - SАLT). Видны сегментированное главное зеркало (1), конструкции следящей системы (2) и инструментальный отсек (3).

Рисунок 2 - Башня телескопа (SALT) БЮАТ

На переднем плане видна специальная юстировочная башня для обеспечения согласования сегментов главного зеркала. Фото автора.

Стоимость проекта для телескопа такого класса весьма низка - всего 20 млн. долларов США. Причем стоимость самого телескопа составляет лишь половину этой суммы, остальное - затраты на башню и инфраструктуру. Еще в 10 млн. долларов, по современной оценке, обойдется обслуживание инструмента в течение 10 лет. Столь низкая стоимость обусловлена и упрощенной конструкцией, и тем, что он создается как аналог уже разработанного.

Хобби-Эберли Телескоп (HET) Мак-Дональдской обсерватории на горе Фолкс (Техас, США). По его аналогу создается Большой Южно-Африканский Телескоп (SALT).[1]

Рисунок 3 - Хобби-Эберли Телескоп (НЕТ)

SALТ (соответственно и HET) радикально отличаются от предыдущих проектов больших оптических (инфракрасных) телескопов. Оптическая ось SALT установлена под фиксированным углом 35° к зенитныму направлению, причем телескоп способен поворачиваться по азимуту на полный круг. В течение сеанса наблюдений инструмент остается стационарным, а следящая система, расположенная в его верхней части, обеспечивает сопровождение объекта на участке 12° по кругу высот. Таким образом, телескоп позволяет наблюдать объекты в кольце шириной 12° в области неба, отстоящей от зенита на 29 - 41°. Угол между осью телескопа и зенитным направлением можно менять (не чаще чем раз в несколько лет), изучая разные области неба.

Диаметр главного зеркала - 11 м. Однако его максимальная область, используемая для построения изображений или спектроскопии, соответствует 9,2-м зеркалу. Оно состоит из 91 шестиугольного сегмента, каждый диаметром 1 м. Все сегменты имеют сферическую поверхность, что резко удешевляет их производство. Кстати, заготовки сегментов сделаны на Лыткаринском заводе оптического стекла, первичную обработку выполняли там же, окончательную полировку проводит (на момент написания статьи еще не закончена) фирма Кодак. Корректор Грегори убирающий сферическую аберрацию, эффективен в области 4?. Свет может по оптическим волокнам передаваться к спектрографам различных разрешений в термостатируемых помещениях. Возможно также установить легкий инструмент в прямом фокусе.

Телескоп Хобби-Эберли, а значит и SALT, разработаны, по существу, как спектроскопические инструменты для длин волн в интервале 0.35-2.0 мкм. SALT наиболее конкурентоспособен с научной точки зрения при наблюдении астрономических объектов, равномерно распределенных по небу или располагающихся в группах размером несколько угловых минут. Поскольку работа телескопа будет осуществляться в пакетном режиме (queue-scheduled), особенно эффективны исследования переменности в течение суток и более. Спектр задач для такого телескопа очень широк: исследования химического состава и эволюции Млечного Пути и близлежащих галактик, изучение объектов с большим красным смещением, эволюция газа в галактиках, кинематика газа, звезд и планетарных туманностей в удаленных галактиках, поиск и изучение оптических объектов, отождествляемых с рентгеновскими источниками. Телескоп SALT расположен на вершине, где уже размещены телескопы Южно-Африканской Обсерватории, приблизительно в 18 км к востоку от поселка Сазерленд (Sutherland) на высоте 1758 м. Его координаты - 20°49 восточной долготы и 32°23 южной широты. Строительство башни и инфраструктуры уже закончено. Дорога автомобилем из Кейптауна занимает приблизительно 4 часа. Сазерленд расположен далеко от всех главных городов, поэтому здесь очень ясное и темное небо. Статистические исследования результатов предварительных наблюдений, которые проводились более 10 лет, показывают, что доля фотометрических ночей превышает 50%, а спектроскопических составляет в среднем 75%. Поскольку этот большой телескоп прежде всего оптимизирован для спектроскопии, 75% - вполне приемлемый показатель.

Среднее атмосферное качество изображения, измеренное Дифференциальным Монитором Движения Изображения (DIMM), составило 0.9". Эта система, размещается немного выше 1 м над уровнем почвы. Отметим, что оптическое качество изображения SALT-0.6". Этого достаточно для работ по спектроскопии.

Англо-австралийский телескоп (ААТ).[1]

Рисунок 4 - Англо-австралийский телескоп (ААТ)

Купол Англо-австралийский телескопа (ААТ). Вид на Национальный Парк Уоррумбангл.

По современным меркам -- это небольшой телескоп. Я внёс его в этот список только, чтобы заполнить пробел в приведённой выше карте телескопов, поэтому упомяну о нём бегло.

Диаметр главного зеркала -- 3,9 м. Начало наблюдений -- 1975 г. Расположен в Австралии, в штате Новый Южный Уэльс, в Национальном Парке Уоррумбангл (Warrumbungle). А точнее, на горе Сайдинг-Спринг (высота 1165 м) на территории обсерватории «Сайдинг-Спринг», которая принадлежит «Австралийской Астрономической Обсерватории» (ААО).

С помощью этого инструмента в основном проводится обзорное фотографирование южного полушария неба, поиски околоземных объектов, исследования газовых потоков вокруг Чёрных дыр, поиск старейших звёзд млечного пути и т.д.

7 августа 2006 году Робертом Макнотом на этом инструменте была открыта самая яркая комета последних нескольких десятилетий. Комета Макнота (C/2006 P1) достигла 6-ой звёздной величины в январе 2007 года и жители южного полушария могли её наблюдать даже днём невооружённым глазом.

Телескоп Хейла.[1]

Рисунок 5 - Купол телескопа Хейла ночью

Диаметр главного зеркала -- 5,08 м. Расположен в «Маунт-Паломарской Астрономической Обсерватории» на горе Паломар (высота 1700 метров) около 200 км. от города Пасадена (США, Калифорния).

Его строительство началось в 1936 году, но из-за Второй Мировой войны работы затянулись до 1948 года. На протяжении более 20 лет, до появления в 1976 г. БТА-6, он оставался самым большим телескопом в мире.

Рисунок 6 - Труба телескопа Хейла.

Немного истории. Своему появлению этот телескоп обязан настоящему фанату астрономии по имени Джордж Эллери Хейл, который практически всю свою жизнь занимался созданием больших (для того времени) телескопов. В 1908 г. на горе Вильсон (Калифорния) он установил 1,5 метровый телескоп, в 1917 г. там же он построил уже 2,5 метровый телескоп, который оставался крупнейшим в мире до 1948 г. Но он задался целью построить ещё в 2 раза более крупный телескоп. В 1928 г. он получил для осуществления своего проекта 6 млн. долл. из Финансового Фонда Рокфеллера. Изготовление главного зеркала было доверено фирме Corning Glass Works, которая использовала для этого новое стекло Pyrex с улучшенными характеристиками. Строительство обсерватории началось в 1936 году, но из-за Второй Мировой войны работы затянулись до 1948 года. Сам Джордж Хейл умер в 1938 году, не дожив 10 лет до того как телескоп, названный его именем увидел «первый свет».

Этот инструмент и по сей день активно используется учёными для изучения вселенной, конечно, в модернизированном виде -- его снабдили современным оптическим и инфракрасным сенсором и системой адаптивной оптики, которая значительно уменьшает искажения света звёзд, вносимые движениями земной атмосферы.[1]