§ 2.11. Условия наступления затмений и их общее число в году
Если бы плоскость лунной орбиты совпадала с плоскостью эклиптики, то солнечные и лунные затмения происходили бы каждый синодический месяц. Но плоскость лунной орбиты наклонена к плоскости эклиптики под углом в 5° 09', поэтому Луна во время новолуния или полнолуния может находиться далеко от плоскости эклиптики, и тогда ее диск пройдет выше или ниже диска Солнца или конуса тени Земли, и никакого затмения не случится.
Чтобы произошло солнечное или лунное затмение, необходимо, чтобы Луна во время новолуния или полнолуния находилась вблизи узла своей орбиты, т.е. недалеко от эклиптики.
Расчеты показывают, что ширина области эклиптики вблизи узлов лунной орбиты, где возможно солнечное затмение, составляет примерно 36°. Дугу эклиптики в 36° Солнце, перемещаясь со средней скоростью 59' в сутки, проходит примерно за 37 суток. Но за 37 дней обязательно будет одно новолуние, а может быть и два, так как продолжительность синодического месяца 29,5 суток. Следовательно, каждый год обязательно бывает 2 солнечных затмения (около двух узлов лунной орбиты), но может быть 4 и даже 5 затмений, поскольку драконический год меньше календарного года. Пять солнечных затмений в году случается тогда, когда первое происходит вскоре после 1-го января.
С помощью расчетов можно установить, что допустимая область лунных затмений имеет ширину примерно 22°. Тень Земли проходит это расстояние примерно за 22 суток. Но так как синодический месяц содержит 29,5 суток, то в этом случае вблизи узла лунной орбиты может произойти одно лунное затмение или не быть вообще ни одного. Таким образом, на протяжении года может не произойти ни одного лунного затмения, а самое большее их может быть два или три. Три лунных затмения в году случаются тогда, когда первое из них происходит вскоре после 1-го января.
Несложно установить, что на протяжении года может произойти самое большее семь затмений— либо два лунных и пять солнечных, либо три лунных и четыре солнечных. Однако такие годы случаются редко; чаще всего в году бывает два солнечных и два лунных затмения. Наименьшее число затмений в году — два и оба солнечные.
Последовательность затмений повторяется почти точно в прежнем порядке через промежуток времени, который называется саросом (сарос — египетское слово, означающее “повторение”). Сарос, известный еще в древности, составляет 18 лет и 11,3 суток. Действительно, затмения будут повторяться в прежнем порядке (после какого-либо начального затмения) спустя столько времени, сколько необходимо, чтобы та же фаза Луны случилась на том же расстоянии Луны от узла ее орбиты, как и при начальном затмении.
Фазы Луны повторяются в среднем через 29,53 суток; возвращение Луны к одному и тому же узлу своей орбиты происходит через 27,21 суток, а промежуток времени между двумя последовательными прохождениями центра Солнца через один и тот же узел лунной орбиты равен 346,62 суток. Следовательно, период повторяемости затмений (сарос) будет равен наименьшему общему кратному указанных выше периодов.
В течение каждого сароса происходит 70-71 затмений, из них 42-43 солнечных и 28 лунных. Таким образом, солнечные затмения происходят чаще лунных, но в данной точке на поверхности Земли чаще можно наблюдать лунные затмения, так как они видны на целом полушарии Земли, тогда как солнечные затмения видны лишь в сравнительно узкой полосе. Особенно редко удается видеть полные солнечные затмения, хотя в течение каждого сароса их бывает около 10. В данной точке земной поверхности полные солнечные затмения видны в среднем 1 раз в 200-300 лет.
- Введение
- § 0.1. Предмет и задачи астрономии. Объекты, изучаемые в астрономии
- § 0.2. Разделы астрономии
- § 0.3. Возникновение и развитие астрономии
- § 0.4. Значение астрономии
- Глава 1 основы сферической и практической астрономии
- § 1.1. Звездное небо. Суточное вращение звездного неба
- § 1.2. Небесная сфера
- § 1.3. Системы небесных координат
- § 1.4. Теорема о высоте северного полюса мира над горизонтом
- § 1.5. Параллактический треугольник. Преобразования координат
- § 1.6. Явления, связанные с суточным вращением небесной сферы
- § 1.7. Изменение координат светил при суточном движении
- § 1.8. Рефракция
- § 1.9. Видимое годовое движение Солнца. Эклиптика. Эклиптическая система координат
- § 1.10. Следствия годового движения Солнца по эклиптике
- § 1.11. Суточное движение Солнца на разных широтах
- § 1.12. Основы измерения времени. Звездное время
- § 1.13. Истинное и среднее солнечное время. Уравнение времени
- § 1.14. Связь среднего солнечного времени со звездным
- § 1.15. Местное, всемирное, поясное и летнее время
- Глава 2 строение солнечной системы
- § 2.1. Планеты. Видимые движения планет. Планетные конфигурации. Уравнения синодического движения
- § 2.2. Законы Кеплера
- Можно показать, что расстояние планеты от Солнца в перигелии
- За среднее расстояние планеты от Солнца принимается большая полуось орбиты .
- § 2.3. Определение расстояний в Солнечной системе
- § 2.4. Определение размеров тел Солнечной системы
- § 2.5. Измерение расстояний до звезд
- § 2.6. Движение Земли вокруг Солнца. Параллакс и аберрация
- § 2.7. Схема Солнечной планетной системы
- § 2.8. Орбита Луны. Видимое движение и фазы Луны
- § 2.9. Покрытия светил Луной. Солнечные затмения
- § 2.10. Лунные затмения
- § 2.11. Условия наступления затмений и их общее число в году