§ 6.6. Ядра галактик и их активность. Радиогалактики. Квазары
Характерной особенностью излучения активных ядер галактик является их высокая мощность и переменность, происходящая на самых различных масштабах времени – от нескольких десятков часов до нескольких лет (в рентгеновском диапазоне спектра – вплоть до нескольких минут). Она свидетельствует о чрезвычайной компактности источника излучения.
Основные свойства активных нестационарных галактик (сейфертовских галактик) можно сформулировать следующим образом:
Нестационарные явления в галактиках связаны с их ядрами, на которые приходится значительная доля излучения всей галактики (нередко в областях диаметром в 1 парсек выделяется мощность излучения, сравнимая со светимостью нашей Галактики).
Излучение ядер по наблюдениям в широком диапазоне длин волн является нетепловым.
Излучение ядер, как правило, является переменным.
Спектры излучения ядер содержат широкие эмиссионные линии, вызванные движением газа с большими скоростями.
Первое и четвертое свойства были сформулированы еще Карлом Сейфертом.
Активные галактики составляют примерно 1 % от общего числа спиральных галактик.
Активные галактики можно обнаружить по переменности их блеска. Кстати, целый ряд переменных внегалактических объектов был открыт астрономами и занесен в соответствующие каталоги переменных звезд, и только после получения данных о расстояниях до них догадались о внегалактической природе этих объектов. Такова, например, переменная звезда BW в созвездии Тельца, оказавшаяся мощным радиоисточником 3С120 с оптическим спектром, характерным для сейфертовских галактик. В качестве переменных звезд были уже известны и некоторые другие внегалактические объекты: AP Весов, Х Волос Вероники.
Переменность с большой амплитудой блеска как в радио, так и в оптическом диапазонах характерна для лацертид, названных так по имени BL Lacertae (объект в созвездии Ящерицы), первоначально известной как переменная звезда. У лацертид оптические спектры являются непрерывными. Блеск лацертид изменяется в широких пределах. Излучение лацертид сильно поляризовано (до 50–60 %), а это указывает на присутствие магнитного поля.
Таким образом, в настоящие время известно несколько тысяч галактик с нестационарными ядрами, которое можно разбить на три основные группы:
1. галактики, подобные обнаруженным Сейфертом (сейфертовские галактики);
2. радиогалактики и квазары;
3. объекты типа BL Ящерицы (лацертиды).
В 1963 г. некоторые источники радиоизлучения с угловыми размерами в 1" или меньше были отождествлены со звездообразными объектами в оптическом диапазоне, иногда окруженными диффузным ореолом или выбросами вещества. Изучено много тысяч подобных объектов, названных квазарами (квазизвездными радиоисточниками).
Такие же оптические объекты, но не обладающие сильным радиоизлучением, были открыты в 1965 г. и названы квазизвездными галактиками (квазагами), а вместе с квазарами их стали называть квазизвездными объектами.
Квазары, как и активные ядра галактик, обладают избытком излучения в инфракрасной и рентгеновской областях спектра.
В спектрах квазаров наблюдаются эмиссионные линии, типичные для диффузных туманностей, а иногда и резонансные линии поглощения.
В первое время отождествление этих линий было затруднено необычайно сильным красным смещением: линии, обычно расположенные в ультрафиолетовой области спектра, в ряде случаев оказываются в видимой области. Хотя высказывалась возможность того, что причина красного смещения линий в спектрах квазаров иная, чем у далеких галактик, скорее всего оно говорит об огромных скоростях удаления квазаров. Расстояния, найденные по красным смещениям, показывают, что квазары — самые далекие из известных нам объектов. Если это действительно так, то они позволяют изучить свойства вещества на протяжении огромных расстояний более 109 пс, которым соответствуют масштабы времени в миллиарды лет.
Наиболее удивительным свойством квазаров оказалась переменность излучения некоторых из них, открытая сначала в оптическом, а затем и в радиодиапазоне. Колебания светимости происходят неправильным образом за время порядка года и даже меньше (до недели!). Отсюда можно сделать вывод, что размеры квазаров не превышают пути, проходимого светом за время существенного изменения светимости (иначе переменность не наблюдалась бы) и заведомо меньше светового года, т.е. не более десятков тысяч астрономических единиц.
Квазары во многом напоминают активные ядра галактик. Об этом говорят их малые угловые размеры, распределение энергии в спектре, переменность их оптического и радиоизлучения, наблюдаемая в некоторых случаях. Ряд особенностей сближает квазары с ядрами сейфертовских галактик. К ним прежде всего относится сильное расширение эмиссионных линий в спектрах, указывающее на движения со скоростями, достигающими 3000 км/сек. У некоторых квазаров наблюдаются облака выброшенного вещества, что говорит о взрывном характере происходящих в них явлений, приводящих к высвобождению огромных энергий, по порядку величины сравнимых с излучением радиогалактик. По-видимому, аналогичные процессы происходят в мощных радиогалактиках типа Лебедь-А и вызывают взрывы ядер некоторых других галактик.
Предполагается, что квазары — одна из стадий эволюции галактик.
- Глава 3 основы небесной механики
- § 3.1. Закон всемирного тяготения. Задача двух тел
- § 3.2. Первый обобщенный закон Кеплера. Характеристические скорости
- § 3.3. Второй и третий обобщенные законы Кеплера
- § 3.4. Задачи теоретической астрономии. Задача n тел. Возмущения
- § 3.5. Возмущающая сила
- Солнце получает ускорение по направлению ср1 от планеты p1 и ускорение по направлению ср2 от планеты р2 . Здесь g есть гравитационная постоянная.
- § 3.6. Определение массы тел Солнечной системы
- § 3.7. Приливы и отливы
- Следовательно, под действием лунного притяжения водная оболочка Земли принимает форму эллипсоида, вытянутого по направлению к Луне, и близ точек a и b будет прилив, а у точек f и d— отлив.
- § 3.8. Прецессия и нутация земной оси
- Глава 4 физика планетной системы
- § 4.1. Две группы планет. Земля, ее внутреннее строение и строение атмосферы
- § 4.2. Луна
- § 4.3. Меркурий
- § 4.4. Венера
- § 4.5. Марс
- § 4.6. Юпитер
- § 4.7. Сатурн
- § 4.8. Уран
- § 4.9. Нептун
- § 4.10. Спутники планет. Кольца планет
- § 4.11. Астероиды
- § 4.12. Кометы
- § 4.13. Метеоры. Метеориты
- § 4.14. Современные представления о происхождении Солнечной системы
- Глава 5 основы астрофизики и звездной астрономии
- § 5.1. Электромагнитное излучение, исследуемое в астрофизике
- § 5.2. Основы астрофотометрии
- § 5.3. Абсолютная звездная величина и светимость звезд
- § 5.4. Основы колориметрии
- § 5.5. Излучение абсолютно черного тела. Температура
- § 5.6. Оптические телескопы и радиотелескопы
- § 5.7. Солнце, его общие характеристики и спектр
- § 5.8. Внутреннее строение Солнца и строение его атмосферы. Солнечная активность
- § 5.8. Спектры звезд и спектральная классификация
- § 5.9. Диаграмма спектр-светимость. Классы светимости. Спектральные параллаксы звезд
- § 5.10. Определение основных характеристик звезд
- § 5.11. Диаграммы масса-светимость и радиус-масса
- § 5.12. Двойные звезды
- § 5.13. Переменные звезды
- § 5.14. Равновесие звезды. Уравнение гидродинамического равновесия. Оценка параметров в недрах звезд
- § 5.15. Источники энергии звезд
- § 5.16. Возникновение и эволюция звезд. Модели звезд
- Глава 6 основы галактической и внегалактической астрономии
- § 6.1. Млечный путь. Галактика. Галактическая концентрация
- § 6.2. Собственные движения и лучевые скорости звезд
- § 6.3. Звездные скопления
- § 6.4. Диффузная материя в Галактике. Поглощение света. Туманности
- § 6.5. Галактики. Методы определения характеристик галактик
- § 6.6. Ядра галактик и их активность. Радиогалактики. Квазары
- § 6.7. Красное смещение в спектрах далеких галактик. Пространственное распределение галактик. Метагалактика
- Глава 7 элементы космологии
- § 7.1. Современные представления о строении и эволюции Вселенной. Модели Вселенной. “Горячая модель”