2.10.4.3 Реальність поля
Кількісне, математичне формулювання законів поля знаходимо в так званих рівняннях Максвелла. їх проста форма приховує глибину й багатий зміст, які стають зрозумілими тільки при ретельному вивченні. Формулювання цих рівнянь є найважливішою подією з часів Ньютона не тільки з погляду цінності їхнього змісту, але й тому, що вони є зразком нового типу законів. Характерну рису рівнянь Максвелла, що виявляється й у всіх інших рівняннях сучасної фізики, можна висловити одним реченням: рівняння Максвелла виражають закони структури поля.
До рівнянь Максвелла приводять два істотних кроки. Перший крок: у розглянутих дослідах Ерстеда колові лінії магнітного поля, що замикаються навколо струму, повинні сходитися в точці; у досвіді Фарадея — колові лінії електричного поля, що замикаються навколо змінного магнітного поля, теж повинні сходитися в точку. Стягування силових ліній електричних і магнітних полів у точку дає можливість виражати структуру поля диференціальними рівняннями в частинних похідних.
Другий крок полягає в трактуванні поля як чогось реального. Створене один раз електромагнітне поле існує, діє і змінюється відповідно до законів Максвелла. Рівняння Максвелла описують структуру електромагнітного поля. Ареною дії цих законів є весь простір, а не одні тільки точки, в яких знаходяться речовина або заряди, як це справедливо для механічних законів.
У механіці, знаючи положення й швидкість частинок у початковий момент часу, знаючи діючі сили, можна передбачати всю траєкторію, яку частинка опише в майбутньому. У теорії Максвелла, якщо тільки ми знаємо поле в який-небудь момент часу, ми можемо вивести з рівнянь, установлених цією теорією, як буде змінюватися все поле в просторі і в часі. Рівняння Максвелла дозволяють нам прямувати за історією поля так само, як-рівняння механіки дозволяють прямувати за історією матеріальних частинок.
За допомогою законів Ньютона ми можемо обчислити рух Землі, знаючи силу, що діє між Сонцем і Землею. Ці закони пов'язують рух Землі з дією віддаленого Сонця. І Земля, і Сонце, хоч і віддалені одне від одного, обоє беруть участь у грі сил.
У теорії Максвелла немає речовинних учасників дії. Математичні рівняння цієї теорії виражають закони, що керують електромагнітним полем. Вони не пов'язують, як це було в законах Ньютона, дві широко розділені події, вони не пов'язують подію тут з умовами там. Поле тут і тепер залежить від поля безпосередньо по сусідству в момент, що тільки що минув. Рівняння дозволяють нам передбачати, що відбудеться трохи далі в просторі й трохи пізніше в часі, якщо ми знаємо, що відбувається тут і тепер. Вони дозволяють нам поглиблювати наші знання про поле малими кроками. Ми можемо вивести те, що відбувається тут, з того, що відбувається далеко, шляхом додавання цих дуже малих кроків. У теорії ж Ньютона, навпаки, припустимі тільки великі кроки, що пов'язують віддалені події. Тому електродинаміку Максвелла слід вважати першою послідовною теорією близької дії, тому що вона виводить із принципу близької дії інші кількісні співвідношення, відмінні від тих, до яких приводить принцип дальньої дії. Відповідно, реальність поля можна довести експериментально. В основі лежить "чотиривимірний" характер близької дії. Близькодія тут означає, що дія поля на матеріальну точку (точковий заряд) визначається не миттєвим розміщенням зарядів, а станом поля в просторовій точці в той момент, коли в ній знаходиться цей заряд. Близькодія означає також, що заряд передає свою енергію або імпульс не іншим зарядам, а полю. Відповідно енергія й імпульс є предикатами поля. Таким чином, у фізиці перемогла ідея близькодії, причому не в картезіанській, а в зовсім іншій формі. Картезіанська близькодія через абсолютно твердий стрижень — це тривимірна близькодія, що передається миттєво, еквівалентна дальнодії, якщо говорити про рівняння поля. Близькодія в класичній електродинаміці — це чотиривимірна близькодія, нееквівалентна дальнодії, тому що вона пов'язана зі скінченною швидкістю поширення деформацій поля. Чотиривимірний характер близькодії безпосередньо випливає з рівнянь Максвелла, з механізму електромагнітних коливань, зі змісту електромагнітної теорії світла. Тут не йдеться про який-небудь безпосередній зв'язок між віддаленими точками, уявлення про електромагнітні хвилі є чисто диференціальним, виникнення електричного поля при зміні магнітного й виникнення магнітного при зміні електричного виражаються диференціальними рівняннями, що пов'язують вихори полів, і поширюються від точки до точки. Але вони — це випливає з рівнянь Максвелла — протікають і від миттєвості до миттєвості. Виникнення магнітного поля залежить від похідної електричного поля за часом, тобто від швидкості його зміни в часі. І навпаки, виникнення електричного поля залежить від зміни в часі магнітного поля.
Вивчення рівнянь Максвелла в математичному аспекті показує, що з них можна зробити нові й по-справжньому несподівані висновки, а всю теорію можна випробувати на набагато більш високому рівні, тому що теоретичні наслідки тепер мають кількісний характер і обґрунтовуються завдяки всьому ланцюгу логічних аргументів. За допомогою математичного висновку з рівнянь Максвелла ми можемо встановити характер поля, яке оточує заряд, що зазнає коливальних рухів, його структуру поблизу й удалині від джерела і його зміну в часі. Результатом такого висновку є уявлення про електромагнітну хвилю. Від коливного заряду випромінюється енергія, що поширюється в просторі з певною швидкістю; але передавання енергії, зміна стану є властивістю всіх хвильових процесів. У випадку електромагнітної хвилі поширюються зміни електромагнітного поля. Усяка зміна електричного поля створює магнітне поле; усяка зміна цього магнітного поля створює електричне поле... і так далі. Так як поле несе енергію, усі ці зміни, що поширюються в просторі з певною швидкістю, утворюють хвилю. Електричні й магнітні силові лінії завжди лежать, як це випливає з теорії, у площині, перпендикулярній до напрямку поширення хвилі. Хвиля, що утворюється, є, отже, поперечною. Електромагнітна хвиля поширюється в порожньому просторі. Такий висновок цієї теорії. Якщо коливний заряд перестає рухатися, то його поле стає електростатичним. Але серія хвиль, створених коливанням заряду, продовжує поширюватися. Хвилям властиве незалежне існування, і історію їх змін можна простежити так само, як історію будь-якого іншого матеріального об'єкта. Спираючись на деякі дані, отримані з простих дослідів, які не мають нічого спільного із справжнім поширенням хвиль, теорія Максвелла показує, що швидкість електромагнітних хвиль дорівнює швидкості світла. Теоретичне відкриття електромагнітної хвилі, яка поширюється зі швидкістю світла, є одним з найбільших досягнень в історії науки й таїть у зародку радикальну відмову від механічних концепцій ефіру.
Експеримент підтвердив те, що передбачала теорія. М. Герц уперше довів існування електромагнітних хвиль й експериментально підтвердив, що їх швидкість дорівнює швидкості світла.
- Розділ 1. Природознавство, наука, науковий метод, пізнання і його структура
- 1.1 Що таке природознавство. Види природничих наук, предмет та мета вивчення. Класифікація методів наукового пізнання
- 1.2 Загальнонаукові методи емпіричного пізнання
- 1.2.1 Спостереження
- 1.2.2 Експеримент
- 1.2.3 Вимірювання
- 1.3 Загальнонаукові методи теоретичного пізнання
- 1.3.1 Абстрагування. Сходження від абстрактного до конкретного
- 1.3.2 Ідеалізація. Уявний експеримент
- 1.3.3 Формалізація. Мова науки
- 1.3.4 Індукція та дедукція
- 1.4 Загальнонаукові методи, що застосовуються на емпіричному й теоретичному рівнях пізнання
- 1.4.1 Аналіз і синтез
- 1.4.2 Аналогія та моделювання
- Розділ 2. Зародження, становлення й і розвиток природознавства
- 2.1 Зародження й розвиток наукових знань у стародавньому світі
- 2.1.1 Нагромадження раціональних знань у первісну епоху (від неандертальця до homo sapiens)
- 2.1.1.1 Повсякденне, стихійно-емпіричне знання
- 2.1.1.2 Зародження рахунку
- 2.1.1.3 Астрономічні знання та календар
- 2.1.2 Міфологія
- 2.2 Становлення цивілізації
- 2.2.1 Історичні передумови виникнення цивілізації
- 2.2.2 Неолітична революція
- 2.2.2.1 Основні передумови
- 2.2.2.2 Перехід від привласнюючої економіки до відтворюючої (продуктивної")
- 2.2.3 Металургія
- 2.2.4 Розвиток гірничої справи та видобування корисних копалин
- 2.2.5 Розвиток домашніх промислів і становлення ремесла
- 2.2.6 Еволюція суспільної свідомості. Раціональні знання
- 2.2.6.1 Астрономія та календар
- 2.2.6.2 Математичні знання
- 2.2.6.3 Біологія та медицина
- 2.2.6.4 Географія та картографія
- 2.2.7 Виникнення та становлення обміну
- 2.2.8 Поділ праці
- 2.2.9 Розвиток духовної культури
- 2.2.10 Становлення писемності
- 2.2.10.1 Вихідні відомості
- 2.2.10.2 Розвиток піктографії
- 2.3 Географія та основні характеристики цивілізацій стародавнього сходу
- 2.3.1 Давньоєгипетські держави
- 2.3.2 Держави Межиріччя
- 2.3.3 Мала Азія
- 2.3.4 Східне Середземномор'я
- 2.3.5 Середня Азія та Іран
- 2.3.6 Перші держави в Індії
- 2.3.7 Стародавній Китай
- 2.3.8 Культура давньосхідних цивілізацій
- 2.3.9 Від міфу до науки
- 2.3.10 Астрономічні знання стародавнього Єгипту й Межиріччя
- 2.3.11 Вавилонська математика та її застосування у фізиці
- .4 Давні цивілізації Європи
- 2.4.1 Мінойська цивілізація
- 2.4.2 Ахейська (мікенська) цивілізація
- 2.4.3 Греція "гомерівського" періоду
- 2.5 Філософія і наука античного світу
- 2.5.1 Формування й розвиток античної цивілізації
- 2.5.2 Від "дитячості" Гомера до атомістики Демокріта
- 2.5.2.1 Філософія та поезія Гомера
- 2.5.2.2 Мислителі мілетської школи
- 2.5.2.3 Загальна характеристика піфагоризму
- 2.5.2.4 Філософське вчення елеатів
- 2.5.2.5 Античний атомізм
- 2.5.2.6 Учення Арістотеля
- 2.5.2.7 Александрійська наукова школа
- 2.5.2.8 Геоцентрична система Птолемея
- 2.5.2.9 Спад у розвитку античної науки
- 2.6 Наука середніх віків
- 2.6.1 Основна характеристика епохи середньовіччя
- 2.6.2 Наука на середньовічному сході
- 2.6.3 Наука в середньовічній Європі
- 2.6.4 Висновок
- 2.7 Природознавство в епоху Відродження
- 2.7.1 Основна характеристика епохи Відродження
- 2.7.2 Філософія епохи відродження
- 2.7.3 Кінематична статика
- 2.7.3.1 Леонардо да Вінчі
- 2.7.3.2 Тарталья і Кардано
- 2.7.4 Геометрична статика
- 2.7.4.1 Убальдо дель Монте
- 2.7.4.2 Джованні Баттиста Бенедетті
- 2.7.4.3 Сімон Стевін
- 2.7.5 Кінематика
- 2.7.5.1 Основні передумови геліоцентризму
- 2.7.5.2 М. Коперник і його геліоцентрична система світу
- 2.7.5.3 Нова космологія
- 2.7.6 Джордано Бруно: світоглядні висновки з коперниканізму
- 2.7.7 Відкриття законів руху планет
- 2.7.7.1 Життя, присвячене служінню Урани
- 2.7.7.2 Йоганн Кеплер
- 2.8 Виникнення класичної механіки
- 2.8.1 Механіка г. Галілея
- 2.8.2 Картезіанська фізика
- 2.8.2.1 Декартівська концепція вихорів
- 2.8.2.2 Учення про речовину й теплоту
- 2.8.2.3 Космогонія
- 2.8.3 Ньютонівська революція
- 2.8.3.1 Ньютон і його час
- 2.8.3.2 "Математичні начала натуральної філософії" і їх структура
- 2.8.3.3 Закон всесвітнього тяжіння
- 2.8.3.4 Математичне узагальнення
- 2.8.3.5 Ньютонівська оптика
- 2.8.3.6 Атомістичні погляди Ньютона
- 2.8.3.7 Учення Ньютона про ефір
- .8.3.8 Ньютонівська Ідея дальньої дії
- 2.8.3.9 Простір, час, рух
- 2.9 Від геометричного методу до аналітичної механіки
- 2.9.1 Принцип найменшої дії
- 2.9.2 Принцип Даламбера
- 2.9.3 Аналітична механіка матеріальної точки й динаміка твердого тіла Ейлера
- 2.9.4 Аналітична механіка системи матеріальних точок і тіл Лагранжа
- 2.9.5 Розвиток аналітичної механіки
- 2.9.5.1 Принцип Гамільтона
- 2.9.5.2 К. Г. Якобі
- 2.9.5.3 М. В. Остроградський
- 2.9.5.4 Немеханічне трактування принципу найменшої дії Гельмгольца
- 2.9.5.5 Принцип найменшого примусу Гаусса
- 2.9.5.6 "Механіка без сили" Герца
- 2.10 Виникнення й розвиток електродинаміки
- 2.10.1Перетворення електрики на магнетизм
- 2.10.2 Перетворення магнетизму на електрику
- 2.10.3 Ідея поля
- 2.10.3.1 Фізичне поле Фарадея
- 2.10.3.2 Дві основи теорії поля
- 2.10.4 Теорія електромагнітного поля Максвелла
- 2.10.4.1 Основні передумови
- 2.10.4.2 Струм зміщення
- 2.10.4.3 Реальність поля
- 2.10.4.4 Поле та ефір
- 2.11 Основні досягнення природознавства XIX століття
- Розділ з. Сучасна фізична картина світу
- 3.1 Простір і час
- 3.1.1 Загальні зауваження
- 3.1.2 Основні концепції простору й часу
- 3.1.3 Поняття простору й часу у філософії і природознавстві xvi11 -XIX століть
- 3.1.4 Розвиток уявлень про простір і час у XX столітті
- 3.2 Теорія відносності
- 3.2.1 Загальні зауваження
- 3.2.2 Абсолютно чи відносно?
- 3.2.3 Експеримент Майкельсона-Морлі
- 3.2.4 Спеціальна теорія відносності (частина і)
- 3.2.5 Спеціальна теорія відносності (частина II)
- 3.2.6 Принцип еквівалентності
- 3.2.7 Загальна теорія відносності
- 3.3 Закон збереження енергії в макроскопічних процесах
- 3.3.1 Робота в механіці, закон збереження та перетворення енергії в механіці
- 3.3.2 Перший закон термодинаміки
- 3.4 Другий закон термодинаміки та принцип зростання ентропії
- 3.4.1 Другий закон термодинаміки
- 3.4.2 Ідеальний цикл Карно
- 3.4.3 Поняття ентропії
- 3.4.4 Ентропія та імовірність
- 3.4.5 Порядок і хаос. Стріла часу
- 3.4.6 Проблема теплової смерті всесвіту. Флуктаційна гіпотеза Больцмана
- 3.4.7 Синергетика. Народження порядку з хаосу
- 3.5 Квантова механіка
- 3.5.1 Гіпотеза про кванти
- 3.5.2 Фотони
- 3.5.3 Планетарний атом
- 3.5.4 Гіпотеза де Бройля. "Хвилі матерії"
- 3.5.5 Співвідношення невизначеностей
- 3.5.6 Хвильова функція. Хвилі імовірності. Образ атома
- 3.5.7 Причинність класична і причинність квантова
- 3.5.8 Принцип додатковості
- 3.6 Світ елементарних частинок
- 3.6.1 Фундаментальні фізичні взаємодії
- 3.6.1.1 Гравітація
- 3.6.1.2 Електромагнетизм
- 3.6.1.3 Слабка взаємодія
- 3.6.1.4 Сильна взаємодія
- 3.6.1.5 Проблеми єдності фізики
- 3.6.2 Класифікація елементарних частинок
- 3.6.2.1 Характеристики субатомних частинок
- 3.6.2.2 Лептони
- 3.6.2.3 Адрони
- 3.6.2.4 Частинки — носії взаємодій
- 3.6.3 Теорії елементарних частинок
- 3.6.3.1 Квантова електродинаміка
- 3.6.3.2 Теорія кварків
- 3.6.3.3 Теорія електрослабкої взаємодії
- 3.6.3.4 Квантова хромодинаміка
- 3.6.3.5 На шляху до великого об'єднання
- 3.7 Проблеми енергетики (ядерні і термоядерні реактори)
- 3.7.1. Поділ ядер урану
- 3.7.2 Ядерні реактори
- 3.7.3 Світові енергетичні ресурси та необхідність вирішення проблеми керованого термоядерного синтезу
- Розділ 4. Сучасна астрофізика та космологія
- 4.1 Еволюція всесвіту
- 4.1.1 Класична космологія
- 4.1.2 Парадокси Шезо-Ольберса і Зеєлігера
- 4.1.3 Неевклідові геометрії
- 4.1.4 Космологічний принцип
- 4.1.5 Всесвіт Ейнштейна
- 4.1.6 Всесвіт Фрідмана
- 4.1.7 Закон Хаббла й дослідження Слайфера
- 4.1.8 Моделі Всесвіту
- 4.1.9 Модель гарячого Всесвіту. Реліктове випромінювання
- 4.1.10 Інфляційна модель
- 4.1.11 Народження Всесвіту
- 4.1.12 Варіанти майбутнього Всесвіту
- 4.1.13 Деякі труднощі гіпотези розширного Всесвіту
- 4.1.14 Проблема позаземних цивілізацій
- 4.2 Галактика і квазари
- 4.2.1 Сонце та Галактика
- 4.2.2 Метагалактика
- 4.2.3 Класифікація галактик
- 4.2.4 Обертання галактик
- 4.2.5 Походження галактик
- 4.2.6 Гіпотези про походження галактик
- 4.2.7 Квазари. Відкриття квазарів
- 4.2.8 Особливості квазарів
- 4.2.9 Розподіл квазарів у просторі
- 4.2.10 Гіпотези про походження квазарів
- 4.3 Народження та еволюція зірок
- 4.3.1 Діаграма Герцшпрунга-Рассела
- 4.3.2 Еволюція зірок
- 4.3.3 Білі карлики
- 4.3.4 Пульсари та нейтронні зірки
- 4.3.5 Чорні дірки
- 4.3.6 Змінні зірки. Цефеїди
- 4.3.7 Зоряні скупчення та асоціації
- 4.3.8 Туманності
- 4.3.9 Пояс зодіаку
- 4.4 Сонячна система
- 4.4.1 Сонце
- 4.4.2 Джерела енергії Сонця
- 4.4.3 Як утворилося сімейство планет
- 4.4.4 Планети
- 4.4.5 Малі планети
- 4.4.6 Комети, метеори й метеорити
- Розділ 5. Сучасна біологічна картина світу
- 5.1 Життя як особлива форма руху матерії
- 5.1.1 Концепції сутності життя
- 5.1.2 Аксіоми біології
- 5.1.3 Основні властивості та ознаки живих організмів
- 5.1.4 Структурні рівні організації життя
- 5.2 Теорія еволюції
- 5.2.1 Еволюційні ідеї, концепції та гіпотези в додарвінівський період
- 5.2.2 Теорія еволюції ч. Дарвіна
- 5.2.3 Подальший розвиток теорії еволюції. Дарвінізм XX століття
- 5.2.4 Пристосованість до середовища існування (адаптація)
- 5.2.5 Різноманітність живої природи
- 5.2.6 Головні напрямки еволюції
- 5.2.7 Необоротність та необмеженість процесу еволюції
- 5.3 Розвиток життя на землі
- 5.3.1 Гіпотези виникнення життя
- 5.3.2 Походження життя
- 5.3.3 Хронологія еволюції живої природи за даними палеонтології
- 5.4 Походження людини
- 5.4.1 Історія питання
- 5.4.2 Місце людини в системі тваринного світу. Докази тваринного походження людини
- 5.4.3 Якісна своєрідність людини як біосоціальної істоти
- 5.4.4 Дані палеонтології та антропології про походження людини
- Розділ 6. Учення про біосферу та ноосферу
- 6.1 Біосфера
- 6.1.1 Виникнення вчення про біосферу
- 6.1.1.1 Етапи життя та наукової творчості в. І. Вернадського
- 6.1.1.2 Концепції в. І. Вернадського про біосферу
- 6.1.2 Утворення планетної системи
- 6.1.3 Основні характеристики Землі
- 6.1.4 Основні вимоги до умов, що забезпечують виникнення та розвиток життя
- 6.1.5 Основні етапи хімічної еволюції, що передували абіогенезу
- 6.1.6 Абіогенез
- 6.1.6.1 Виникнення пробіонтів і біологічних мембран
- 6.1.7 Основні етапи еволюції живої природи
- 6.1.8 Основні характеристики біосфери
- 6.1.9 Виникнення атмосфери та гідросфери
- 6.1.10 Основні характеристики атмосфери
- 6.1.10.1 Озон та аерозолі
- 6.1.10.2 Роль вуглекислого газу
- 6.1.10.3 Вплив атмосфери на радіаційний баланс Землі
- 6.1.11 Гідросфера
- 6.1.12 Взаємодія океану та атмосфери
- 6.1.13 Вологообіг
- 6.1.14 Жива речовина
- 6.1.15 Кругообіг вуглецю
- 6.2 Ноосфера
- 6.2.1 Розвиток і становлення людини
- 6.2.2 Виникнення вчення про ноосферу
- 6.2.2.1 Основні положення вчення про ноосферу е. Леруа і Тайяра де Шардена.
- 6.2.2.2 Концепція ноосфери в. І. Вернадського
- 6.2.3 Перехід біосфери в ноосферу
- 6.2.4 Умови, необхідні для становлення та існування ноосфери
- 6.2.5 Наука як основний чинник ноосфери
- 6.2.6 Проблеми становлення ноосфери